May  2018, 38(5): 2305-2332. doi: 10.3934/dcds.2018095

KdV-like solitary waves in two-dimensional FPU-lattices

1. 

University of Münster, Institute for Analysis and Numerics, Einsteinstr. 62, 48149 Münster, Germany

2. 

Technische Universität Braunschweig, Institute for Computational Mathematics, Universitätsplatz 2, 38106 Braunschweig, Germany

* Corresponding author: Michael Herrmann

Received  March 2017 Revised  January 2018 Published  March 2018

We prove the existence of solitary waves in the KdV limit of two-dimensional FPU-type lattices using asymptotic analysis of nonlinear and singularly perturbed integral equations. In particular, we generalize the existing results by Friesecke and Matthies since we allow for arbitrary propagation directions and non-unidirectional wave profiles.

Citation: Fanzhi Chen, Michael Herrmann. KdV-like solitary waves in two-dimensional FPU-lattices. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2305-2332. doi: 10.3934/dcds.2018095
References:
[1]

F. Chen, Wandernde Wellen in FPU-Gittern, Master Thesis, Institute for Mathematics, Saarland University, Germany, 2013. Google Scholar

[2]

F. Chen, Traveling waves in two-dimensional FPU lattices, PhD Thesis, Institute for Applied Mathematics, University of Münster, Germany, 2017. Google Scholar

[3]

E. Fermi, J. Pasta and S. Ulam, Studis on nonlinear problems, Los Alamos Scientific Laboraty Report, 1940. Google Scholar

[4]

A.-M. Filip and S. Venakides, Existence and modulation of traveling waves in particle chains, Comm. Pure Appl. Math., 52 (1999), 693-735.  doi: 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9.  Google Scholar

[5]

G. Friesecke and K. Matthies, Geometric solitary waves in a 2d mass spring lattice, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 105-114.   Google Scholar

[6]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, J. Dynam. Differential Equations, 27 (2015), 627-652.  doi: 10.1007/s10884-013-9343-0.  Google Scholar

[7]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅰ. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 1601-1627.  doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[8]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅱ. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343-1359.  doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[9]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. Ⅲ. Howland-type Floquet theory, Nonlinearity, 17 (2004), 207-227.  doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[10]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. Ⅳ. Proof of stability at low energy, Nonlinearity, 17 (2004), 229-251.  doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[11]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices, Comm. Math. Phys., 161 (1994), 391-418.  doi: 10.1007/BF02099784.  Google Scholar

[12]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995.  doi: 10.1137/130941638.  Google Scholar

[13]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753-785.  doi: 10.1017/S0308210509000146.  Google Scholar

[14]

M. HerrmannK. MatthiesH. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region, SIAM J. Math. Anal., 45 (2013), 2625-2645.  doi: 10.1137/120877878.  Google Scholar

[15]

M. Herrmann and A. Mikikits-Leitner, KdV waves in atomic chains with nonlocal interactions, Discrete Contin. Dyn. Syst., 36 (2016), 2047-2067.   Google Scholar

[16]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains, SIAM J. Math. Anal., 42 (2010), 1483-1504.  doi: 10.1137/080743147.  Google Scholar

[17]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice, Nonlinearity, 21 (2008), 2911-2947.  doi: 10.1088/0951-7715/21/12/011.  Google Scholar

[18]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351.  doi: 10.1007/s10884-009-9134-9.  Google Scholar

[19]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the FermiPasta-Ulam model near the KdV limit, in Infinite dimensional dynamical systems, vol. 64 of Fields Inst. Commun., Springer, New York, 2013,185–192.  Google Scholar

[20]

A. Hoffman and J. D. Wright, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), 33-59.  doi: 10.1016/j.physd.2017.07.004.  Google Scholar

[21]

G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice, Nonlinearity, 13 (2000), 849-866.  doi: 10.1088/0951-7715/13/3/319.  Google Scholar

[22]

A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press, London, 2005.  Google Scholar

[23]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit for the Fermi-Pasta-Ulam model, in International Conference on Differential Equations, vol. 1, World Scientific, 2000,390-404.  Google Scholar

[24]

H. Schwetlick and J. Zimmer, Kinetic relations for a lattice model of phase transitions, Arch. Rational Mech. Anal., 206 (2012), 707-724.  doi: 10.1007/s00205-012-0566-8.  Google Scholar

[25]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275.  doi: 10.1006/jfan.1996.3121.  Google Scholar

[26]

L. Truskinovsky and A. Vainchtein, Kinetics of martensitic phase transitions: Lattice model, SIAM J. Appl. Math., 66 (2005), 533-553.  doi: 10.1137/040616942.  Google Scholar

[27]

A. Vainchtein, Y. Starosvetsky, J. Wright and R. Perline, Solitary waves in diatomic chains, Phys. Rev. E, 93 (2016), 042210. doi: 10.1103/PhysRevE.93.042210.  Google Scholar

[28]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

show all references

References:
[1]

F. Chen, Wandernde Wellen in FPU-Gittern, Master Thesis, Institute for Mathematics, Saarland University, Germany, 2013. Google Scholar

[2]

F. Chen, Traveling waves in two-dimensional FPU lattices, PhD Thesis, Institute for Applied Mathematics, University of Münster, Germany, 2017. Google Scholar

[3]

E. Fermi, J. Pasta and S. Ulam, Studis on nonlinear problems, Los Alamos Scientific Laboraty Report, 1940. Google Scholar

[4]

A.-M. Filip and S. Venakides, Existence and modulation of traveling waves in particle chains, Comm. Pure Appl. Math., 52 (1999), 693-735.  doi: 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9.  Google Scholar

[5]

G. Friesecke and K. Matthies, Geometric solitary waves in a 2d mass spring lattice, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 105-114.   Google Scholar

[6]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, J. Dynam. Differential Equations, 27 (2015), 627-652.  doi: 10.1007/s10884-013-9343-0.  Google Scholar

[7]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅰ. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 1601-1627.  doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[8]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅱ. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343-1359.  doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[9]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. Ⅲ. Howland-type Floquet theory, Nonlinearity, 17 (2004), 207-227.  doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[10]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. Ⅳ. Proof of stability at low energy, Nonlinearity, 17 (2004), 229-251.  doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[11]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices, Comm. Math. Phys., 161 (1994), 391-418.  doi: 10.1007/BF02099784.  Google Scholar

[12]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995.  doi: 10.1137/130941638.  Google Scholar

[13]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753-785.  doi: 10.1017/S0308210509000146.  Google Scholar

[14]

M. HerrmannK. MatthiesH. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region, SIAM J. Math. Anal., 45 (2013), 2625-2645.  doi: 10.1137/120877878.  Google Scholar

[15]

M. Herrmann and A. Mikikits-Leitner, KdV waves in atomic chains with nonlocal interactions, Discrete Contin. Dyn. Syst., 36 (2016), 2047-2067.   Google Scholar

[16]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains, SIAM J. Math. Anal., 42 (2010), 1483-1504.  doi: 10.1137/080743147.  Google Scholar

[17]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice, Nonlinearity, 21 (2008), 2911-2947.  doi: 10.1088/0951-7715/21/12/011.  Google Scholar

[18]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351.  doi: 10.1007/s10884-009-9134-9.  Google Scholar

[19]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the FermiPasta-Ulam model near the KdV limit, in Infinite dimensional dynamical systems, vol. 64 of Fields Inst. Commun., Springer, New York, 2013,185–192.  Google Scholar

[20]

A. Hoffman and J. D. Wright, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), 33-59.  doi: 10.1016/j.physd.2017.07.004.  Google Scholar

[21]

G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice, Nonlinearity, 13 (2000), 849-866.  doi: 10.1088/0951-7715/13/3/319.  Google Scholar

[22]

A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press, London, 2005.  Google Scholar

[23]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit for the Fermi-Pasta-Ulam model, in International Conference on Differential Equations, vol. 1, World Scientific, 2000,390-404.  Google Scholar

[24]

H. Schwetlick and J. Zimmer, Kinetic relations for a lattice model of phase transitions, Arch. Rational Mech. Anal., 206 (2012), 707-724.  doi: 10.1007/s00205-012-0566-8.  Google Scholar

[25]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275.  doi: 10.1006/jfan.1996.3121.  Google Scholar

[26]

L. Truskinovsky and A. Vainchtein, Kinetics of martensitic phase transitions: Lattice model, SIAM J. Appl. Math., 66 (2005), 533-553.  doi: 10.1137/040616942.  Google Scholar

[27]

A. Vainchtein, Y. Starosvetsky, J. Wright and R. Perline, Solitary waves in diatomic chains, Phys. Rev. E, 93 (2016), 042210. doi: 10.1103/PhysRevE.93.042210.  Google Scholar

[28]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

Figure 1.  Cartoon of the square lattice. The vertical and the horizontal springs are described by the potential $V_1$, while all diagonal springs correspond to $V_2$. Center panel: Triangle lattice with identical springs and single potential function $V$. Right panel: Cartoon of the diamond lattice, which can be regarded as a square lattice without horizontal springs. The lattices have different symmetry groups and produce different coupling terms in the advance-delay-differential equation for lattice waves, see (3)
Figure 2.  Left panel: Numerical approximations of $W_{\epsilon, 1}(\xi)$ (black) and $W_{\epsilon, 2}(\xi)$ (gray) for the square lattice with angle $\alpha = \frac{\pi}{8}$ and positive $\epsilon$. Right panel: The plot $W_{\epsilon, 2} $ versus $W_{\epsilon, 1}$ reveals that the two components of $W_{\epsilon}$ are not proportional, which means that $W_{\epsilon}$ is not unidirectional and our problem cannot be reduced to a one-dimensional one as in [5]
Figure 3.  Left panel. Scaled velocity profile $W_{\epsilon}$ as function of $\xi$. Right panel. Cartoon of the atomistic velocities in the corresponding KdV wave, where $\zeta = \kappa_1i+\kappa_2j-c_{\epsilon}t$ denotes the phase with respect to the original variables. The unscaled profile is obtained from the scaled one by stretching the argument by ${1}/{\epsilon}$ and pressing the amplitude by $\epsilon^2$
Figure 4.  Left panel: Graph of the potential energy for the limit ODE (11). Right panel: The unique homoclinic solution in $\mathsf{L}_{\rm{even}}^2(\mathbb{R})$, which corresponds to the region between the two zeros of $E[W]: = \frac{d_2}{3}W^3-\frac{d_1}{2}W^2$
Figure 5.  Left panel: The ${\mathop{\rm sinc}\nolimits} $ function. Right panel: Lower bound $\tfrac{1}{6}\min\{|z|, 2\}^2$ (dashed) and upper bound $\tfrac{1}{3}\min\{|z|, 2\}^2$ (dashed) for $S_1 = 1-{\mathop{\rm sinc}\nolimits} ^2$ (solid)
Figure 6.  The auxiliary functions $\mu_1$ and $\mu_2$ from (52) in solid and dashed lines, respectively, for the square lattice with $\alpha = 0$
Figure 7.  KdV-limit profiles for selected values of $\alpha$ in the square lattice, where the first and the second component of $W_0$ are represented by the solid and the dashed lines, respectively
Figure 8.  Parameter test for the square lattice. $T(z)$ (solid) and $g(z) = 0.3\cdot (\min\{z, 2\})^2$ (dashed) for several values of $\alpha$. Assumption 7 requires $T(z)\geq g(z)$ for all $z\in \mathbb{R}$
Figure 9.  KdV-limit profiles for selected values of $\alpha$ in the square lattice, where the first and the second component of $W_0$ are represented by the solid and the dashed lines, respectively
Figure 10.  The plots from Figure 7 for the diamond lattice. In the graph of $\lambda$ we find jumps at multiples of $\pi$, which is consistent with the fact that the lattice is symmetric with respect to the horizontal direction. For $\alpha = 0$ no KdV wave exists due to this singularity
Figure 11.  The plots from Figure 8 for the diamond lattice
Figure 12.  The plots from Figure 9 for the diamond lattice
Figure 13.  The plots from Figure 7 for the triangle lattice
Figure 14.  The plots from Figure 8 for the triangle lattice
Figure 15.  The plots from Figure 9 for the triangle lattice
[1]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[2]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[3]

Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou. Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks & Heterogeneous Media, 2006, 1 (4) : 537-568. doi: 10.3934/nhm.2006.1.537

[4]

Shuichi Kawashima, Shinya Nishibata, Masataka Nishikawa. Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane. Conference Publications, 2003, 2003 (Special) : 469-476. doi: 10.3934/proc.2003.2003.469

[5]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[6]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[7]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

[8]

J. W. Choi, D. S. Lee, S. H. Oh, S. M. Sun, S. I. Whang. Multi-hump solutions of some singularly-perturbed equations of KdV type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5181-5209. doi: 10.3934/dcds.2014.34.5181

[9]

Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245

[10]

Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107

[11]

Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285

[12]

Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465

[13]

Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control & Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016

[14]

Qing Yi. On the Stokes approximation equations for two-dimensional compressible flows. Kinetic & Related Models, 2013, 6 (1) : 205-218. doi: 10.3934/krm.2013.6.205

[15]

Tong Zhang, Yuxi Zheng. Exact spiral solutions of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 117-133. doi: 10.3934/dcds.1997.3.117

[16]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[17]

Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823

[18]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[19]

Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125

[20]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of two-dimensional dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 37-53. doi: 10.3934/dcdss.2009.2.37

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (78)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]