This paper is concerned with the following Klein-Gordon-Maxwell system
$\left\{ \begin{align} &-\vartriangle u+\left[ m_{0}^{2}-{{(\omega +\phi )}^{2}} \right]u = f(u),\ \ \ \ \text{in}\ \ {{\mathbb{R}}^{3}}, \\ &\vartriangle \phi = (\omega +\phi ){{u}^{2}},\ \ \ \ \text{in}\ \ {{\mathbb{R}}^{3}}, \\ \end{align} \right.$
where $0 < ω≤ m_0$ and $f∈ \mathcal{C}(\mathbb{R}, \mathbb{R})$. By introducing some new tricks, we prove that the above system has 1) a ground state solution in the case when $0 < ω < m_0$ and $f$ is superlinear at infinity; 2) a nontrivial solution in the zero mass case, i.e. $ω = m_0$ and $f$ is super-quadratic at infinity. These results improve the related ones in the literature.
Citation: |
A. Azzollini
, V. Benci
, T. D'Aprile
and D. Fortunato
, Existence of static solutions of the semilinear Maxwell equations, Ricerche di Matematica, 55 (2006)
, 283-297.
![]() ![]() |
|
A. Azzollini
and A. Pomponio
, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal., 35 (2010)
, 33-42.
![]() ![]() |
|
A. Azzollini
, L. Pisani
and A. Pomponio
, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011)
, 449-463.
doi: 10.1017/S0308210509001814.![]() ![]() ![]() |
|
V. Benci
and D. Fortunato
, The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001)
, 6065-6072.
doi: 10.1016/S0362-546X(01)00688-5.![]() ![]() ![]() |
|
V. Benci
and D. Fortunato
, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002)
, 409-420.
doi: 10.1142/S0129055X02001168.![]() ![]() ![]() |
|
H. Berestycki
and P. L. Lions
, Nonlinear scalar field equations, I -Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983)
, 313-345.
![]() ![]() |
|
P. Carrião
, P. Cunha
and O. Miyagaki
, Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials, Nonlinear Anal., 75 (2012)
, 4068-4078.
doi: 10.1016/j.na.2012.02.023.![]() ![]() ![]() |
|
D. Cassani
, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell' s equations, Nonlinear Anal., 58 (2004)
, 733-747.
doi: 10.1016/j.na.2003.05.001.![]() ![]() ![]() |
|
S. T. Chen and X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^3$,
Z. Angew. Math. Phys. , 67 (2016), Art. 102, 18 pp.
![]() ![]() |
|
S. T. Chen
and X. H. Tang
, Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017)
, 363-383.
doi: 10.11650/tjm/7784.![]() ![]() ![]() |
|
S. T. Chen
and X. H. Tang
, Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017)
, 446-458.
doi: 10.1016/j.camwa.2017.04.031.![]() ![]() ![]() |
|
P. L. Cunha
, Subcritical and supercritical Klein-Gordon-Maxwell equations without Ambrosetti-Rabinowitz condition, Differ. Integral Equ., 27 (2014)
, 387-399.
![]() ![]() |
|
T. D'Aprile
and D. Mugnai
, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb. Sect. A, 134 (2004)
, 893-906.
doi: 10.1017/S030821050000353X.![]() ![]() ![]() |
|
T. D'Aprile
and D. Mugnai
, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004)
, 307-322.
![]() ![]() |
|
L. Ding
and L. Li
, Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential, Comput. Math. Appl., 68 (2014)
, 589-595.
doi: 10.1016/j.camwa.2014.07.001.![]() ![]() ![]() |
|
L. Jeanjean
, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997)
, 1633-1659.
doi: 10.1016/S0362-546X(96)00021-1.![]() ![]() ![]() |
|
L. Jeanjean
, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^N$, Proc. R. Soc. Edinb., Sect. A, Math., 129 (1999)
, 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
|
W. Jeong
and J. Seok
, On perturbation of a functional with the mountain pass geometry, Calc. Var. Partial Differential Equations, Calc. Var. Partial Differential Equations, 49 (2014)
, 649-668.
doi: 10.1007/s00526-013-0595-7.![]() ![]() ![]() |
|
G. B. Li
and C. Wang
, The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36 (2011)
, 461-480.
doi: 10.5186/aasfm.2011.3627.![]() ![]() ![]() |
|
L. Li
and C. L. Tang
, Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system, Nonlinear Anal., 110 (2014)
, 157-169.
doi: 10.1016/j.na.2014.07.019.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ & Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984)
, 109-145.
doi: 10.1016/S0294-1449(16)30428-0.![]() ![]() ![]() |
|
D. D. Qin
, Y. B. He
and X. H. Tang
, Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity, Comput. Math. Appl., 71 (2016)
, 1524-1536.
doi: 10.1016/j.camwa.2016.02.037.![]() ![]() ![]() |
|
M. Struwe
, The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988)
, 19-64.
doi: 10.1007/BF02392272.![]() ![]() ![]() |
|
X. H. Tang
and B. T. Cheng
, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016)
, 2384-2402.
doi: 10.1016/j.jde.2016.04.032.![]() ![]() ![]() |
|
X. H. Tang
and S. T. Chen
, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst., 37 (2017)
, 4973-5002.
doi: 10.3934/dcds.2017214.![]() ![]() ![]() |
|
X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials,
Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp.
![]() ![]() |
|
F. Wang
, Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system, Nonlinear Anal., 74 (2011)
, 4796-4803.
doi: 10.1016/j.na.2011.04.050.![]() ![]() ![]() |
|
M. Willem,
Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
|
L. Zhang
, X. H. Tang
and Y. Chen
, Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators, Commun. Pur. Appl. Anal., 16 (2017)
, 823-842.
doi: 10.3934/cpaa.2017039.![]() ![]() ![]() |
|
J. Zhang
, W. Zhang
and X. L. Xie
, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Commun. Pure Appl. Anal., 15 (2016)
, 599-622.
doi: 10.3934/cpaa.2016.15.599.![]() ![]() ![]() |
|
J. Zhang
, W. Zhang
and X. H. Tang
, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37 (2017)
, 4565-4583.
doi: 10.3934/dcds.2017195.![]() ![]() ![]() |