\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improved results for Klein-Gordon-Maxwell systems with general nonlinearity

This work is partially supported by the Hunan Provincial Innovation Foundation for Postgraduate (No: CX2017B041) and the National Natural Science Foundation of China (No: 11571370)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the following Klein-Gordon-Maxwell system

    $\left\{ \begin{align} &-\vartriangle u+\left[ m_{0}^{2}-{{(\omega +\phi )}^{2}} \right]u = f(u),\ \ \ \ \text{in}\ \ {{\mathbb{R}}^{3}}, \\ &\vartriangle \phi = (\omega +\phi ){{u}^{2}},\ \ \ \ \text{in}\ \ {{\mathbb{R}}^{3}}, \\ \end{align} \right.$

    where $0 < ω≤ m_0$ and $f∈ \mathcal{C}(\mathbb{R}, \mathbb{R})$. By introducing some new tricks, we prove that the above system has 1) a ground state solution in the case when $0 < ω < m_0$ and $f$ is superlinear at infinity; 2) a nontrivial solution in the zero mass case, i.e. $ω = m_0$ and $f$ is super-quadratic at infinity. These results improve the related ones in the literature.

    Mathematics Subject Classification: 35J10, 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Azzollini , V. Benci , T. D'Aprile  and  D. Fortunato , Existence of static solutions of the semilinear Maxwell equations, Ricerche di Matematica, 55 (2006) , 283-297. 
      A. Azzollini  and  A. Pomponio , Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal., 35 (2010) , 33-42. 
      A. Azzollini , L. Pisani  and  A. Pomponio , Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011) , 449-463.  doi: 10.1017/S0308210509001814.
      V. Benci  and  D. Fortunato , The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001) , 6065-6072.  doi: 10.1016/S0362-546X(01)00688-5.
      V. Benci  and  D. Fortunato , Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002) , 409-420.  doi: 10.1142/S0129055X02001168.
      H. Berestycki  and  P. L. Lions , Nonlinear scalar field equations, I -Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983) , 313-345. 
      P. Carrião , P. Cunha  and  O. Miyagaki , Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials, Nonlinear Anal., 75 (2012) , 4068-4078.  doi: 10.1016/j.na.2012.02.023.
      D. Cassani , Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell' s equations, Nonlinear Anal., 58 (2004) , 733-747.  doi: 10.1016/j.na.2003.05.001.
      S. T. Chen and X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^3$, Z. Angew. Math. Phys. , 67 (2016), Art. 102, 18 pp.
      S. T. Chen  and  X. H. Tang , Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017) , 363-383.  doi: 10.11650/tjm/7784.
      S. T. Chen  and  X. H. Tang , Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017) , 446-458.  doi: 10.1016/j.camwa.2017.04.031.
      P. L. Cunha , Subcritical and supercritical Klein-Gordon-Maxwell equations without Ambrosetti-Rabinowitz condition, Differ. Integral Equ., 27 (2014) , 387-399. 
      T. D'Aprile  and  D. Mugnai , Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb. Sect. A, 134 (2004) , 893-906.  doi: 10.1017/S030821050000353X.
      T. D'Aprile  and  D. Mugnai , Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004) , 307-322. 
      L. Ding  and  L. Li , Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential, Comput. Math. Appl., 68 (2014) , 589-595.  doi: 10.1016/j.camwa.2014.07.001.
      L. Jeanjean , Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997) , 1633-1659.  doi: 10.1016/S0362-546X(96)00021-1.
      L. Jeanjean , On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^N$, Proc. R. Soc. Edinb., Sect. A, Math., 129 (1999) , 787-809.  doi: 10.1017/S0308210500013147.
      W. Jeong  and  J. Seok , On perturbation of a functional with the mountain pass geometry, Calc. Var. Partial Differential Equations, Calc. Var. Partial Differential Equations, 49 (2014) , 649-668.  doi: 10.1007/s00526-013-0595-7.
      G. B. Li  and  C. Wang , The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36 (2011) , 461-480.  doi: 10.5186/aasfm.2011.3627.
      L. Li  and  C. L. Tang , Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system, Nonlinear Anal., 110 (2014) , 157-169.  doi: 10.1016/j.na.2014.07.019.
      P. L. Lions , The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ & Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984) , 109-145.  doi: 10.1016/S0294-1449(16)30428-0.
      D. D. Qin , Y. B. He  and  X. H. Tang , Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity, Comput. Math. Appl., 71 (2016) , 1524-1536.  doi: 10.1016/j.camwa.2016.02.037.
      M. Struwe , The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988) , 19-64.  doi: 10.1007/BF02392272.
      X. H. Tang  and  B. T. Cheng , Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016) , 2384-2402.  doi: 10.1016/j.jde.2016.04.032.
      X. H. Tang  and  S. T. Chen , Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst., 37 (2017) , 4973-5002.  doi: 10.3934/dcds.2017214.
      X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp.
      F. Wang , Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system, Nonlinear Anal., 74 (2011) , 4796-4803.  doi: 10.1016/j.na.2011.04.050.
      M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.
      L. Zhang , X. H. Tang  and  Y. Chen , Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators, Commun. Pur. Appl. Anal., 16 (2017) , 823-842.  doi: 10.3934/cpaa.2017039.
      J. Zhang , W. Zhang  and  X. L. Xie , Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Commun. Pure Appl. Anal., 15 (2016) , 599-622.  doi: 10.3934/cpaa.2016.15.599.
      J. Zhang , W. Zhang  and  X. H. Tang , Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37 (2017) , 4565-4583.  doi: 10.3934/dcds.2017195.
  • 加载中
SHARE

Article Metrics

HTML views(870) PDF downloads(578) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return