In this paper we study the existence of time periodic solutions for the evolutionary weighted $p$-Laplacian with a nonlinear periodic source in a bounded domain containing the origin. We show that there is a critical exponent $q_c = q_c(α,β) = \frac{(N+β)p}{N+α-p}-1$ and a singular exponent $q_s = p-1$: there exists a positive periodic solution when $0<q<q_c$ and $q\ne q_s$; while there is no positive periodic solution when $q≥ q_c$. The case when $q = q_s$ is completely different from the remaining case $q\ne q_s$, the problem may or may not have solutions depending on the coefficients of the equation.
Citation: |
C. Azizieh
and P. Clément
, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differential Equations, 179 (2002)
, 213-245.
doi: 10.1006/jdeq.2001.4029.![]() ![]() ![]() |
|
A. Beltramo, Über den Haupteigenwert von periodisch-parabolischen differential operatoren, Ph. D. Thesis, University of Zürich, 1984.
![]() |
|
A. Beltramo
and P. Hess
, On the principal eigenvalue of a periodic-parabolic operator, Comm. Partial Differential Equations, 9 (1984)
, 919-941.
doi: 10.1080/03605308408820351.![]() ![]() ![]() |
|
M.-F. Bidaut-Véron
and M. García-Huidobro
, Regular and singular solutions of a quasilinear equation with weights, Asymptotic Analysis, 28 (2001)
, 115-150.
![]() ![]() |
|
D. Daners
, Periodic-parabolic eigenvalue problems with indefinite weight functions, Arch. Math., 68 (1997)
, 388-397.
doi: 10.1007/s000130050071.![]() ![]() ![]() |
|
M. J. Esteban
, On periodic solutions of superlinear parabolic problems, Trans. Amer. Math. Soc., 293 (1986)
, 171-189.
doi: 10.1090/S0002-9947-1986-0814919-8.![]() ![]() ![]() |
|
M. J. Esteban
, A remark on the existence of positive periodic solutions of superlinear parabolic problems, Proc. Amer. Math. Soc., 102 (1988)
, 131-136.
doi: 10.1090/S0002-9939-1988-0915730-7.![]() ![]() ![]() |
|
B. Gidas
, W. M. Ni
and L. Nirenberg
, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979)
, 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
|
T. Godoy
and U. Kaufmann
, On principal eigenvalues for periodic parabolic problems with optimal condition on the weight function, J. Math. Anal. Appl., 262 (2001)
, 208-220.
doi: 10.1006/jmaa.2001.7559.![]() ![]() ![]() |
|
T. Godoy
, E. Lami Dozo
and S. Paczka
, The periodic parabolic eigenvalue problem with $L^∞$ weight, Math. Scand., 81 (1997)
, 20-34.
doi: 10.7146/math.scand.a-12864.![]() ![]() ![]() |
|
S. M. Ji
, Y. T. Li
, R. Huang
and J. X. Yin
, Singular periodic solutions for the $p$-Laplacian in a punctured domain, Comm. Pure Appl. Anal., 16 (2017)
, 373-392.
doi: 10.3934/cpaa.2017019.![]() ![]() ![]() |
|
S. M. Ji
, J. X. Yin
and R. Huang
, Oscillatory traveling waves of polytropic filtration equation with generalized Fisher-KPP sources, J. Math. Anal. Appl., 419 (2014)
, 68-78.
doi: 10.1016/j.jmaa.2014.04.030.![]() ![]() ![]() |
|
U. Kaufmann
, Some results on principal eigenvalues for periodic parabolic problems with weight, Bull. Austral. Math. Soc., 68 (2003)
, 177-184.
doi: 10.1017/S0004972700037564.![]() ![]() ![]() |
|
Y. X. Li
and C. H. Xie
, Blow-up for $p$-Laplacian parabolic equations, Electron. J. Differential Equations, 20 (2003)
, 1-12.
![]() ![]() |
|
P. Lindqvist
, On the equation $\mbox{div}(|\nabla u|^{p-2}\nabla u)+λ|u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109 (1990)
, 157-164.
doi: 10.1090/S0002-9939-1990-1007505-7.![]() ![]() ![]() |
|
E. Mitidieri
and S. I. Pohozaev
, Nonexistence of positive solutions for quasilinear elliptic problems on $\mathbb R^N$, Proc. Steklov Inst. Math., 227 (1999)
, 186-216.
![]() ![]() |
|
N. Mizoguchi
, Periodic solutions for degenerate diffusion equations, Indiana Univ. Math. J., 44 (1995)
, 413-432.
![]() ![]() |
|
W. M. Ni
and J. Serrin
, Nonexistence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2) Suppl., 8 (1985)
, 171-185.
![]() ![]() |
|
M. Ôtani
, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal., 76 (1988)
, 140-159.
doi: 10.1016/0022-1236(88)90053-5.![]() ![]() ![]() |
|
P. Quittner
, Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems, NoDEA Nonlinear Differential Equations Appl., 11 (2004)
, 237-258.
![]() ![]() |
|
E. Sawyer
and R. L. Wheeden
, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, American Journal of Mathematics, 114 (1992)
, 813-874.
doi: 10.2307/2374799.![]() ![]() ![]() |
|
T. I. Seidman
, Periodic solutions of a non-linear parabolic equation, J. Differential Equations, 19 (1975)
, 242-257.
doi: 10.1016/0022-0396(75)90004-2.![]() ![]() ![]() |
|
J. Serrin
and H. Zou
, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002)
, 79-142.
doi: 10.1007/BF02392645.![]() ![]() ![]() |
|
H. Song, J. Yin and Z. Wang, Isolated singularities of positive solutions to the weighted $p$-Laplacian, Calc. Var., 55 (2016), Art. 28, 16 pp.
![]() ![]() |
|
Y. F. Wang
, J. X. Yin
and Z. Q. Wu
, Periodic solutions of evolution $p$-Laplacian equations with nonlinear sources, J. Math. Anal. Appl., 219 (1998)
, 76-96.
doi: 10.1006/jmaa.1997.5783.![]() ![]() ![]() |
|
Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and Parabolic Equations, World Scientific, 2006.
doi: 10.1142/6238.![]() ![]() |
|
J. X. Yin
and C. H. Jin
, Periodic solutions of the evolutionary $p$-Laplacian with nonlinear sources, J. Math. Anal. Appl., 368 (2010)
, 604-622.
doi: 10.1016/j.jmaa.2010.03.006.![]() ![]() ![]() |