May  2018, 38(5): 2441-2465. doi: 10.3934/dcds.2018101

The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Received  August 2017 Published  March 2018

We construct a heteroclinic solution to the FitzHugh-Nagumo type reaction-diffusion system (FHN RD system) with heterogeneity by the sub-supersolution method due to [5]. $σ(d,γ)$ is introduced as the Rayleigh quotient corresponding to a linearized eigenvalue problem of the subsolution, where $d$ and $γ$ are parameters. The key to construct the solution is the uniform estimate for $σ(·,·)$ from below. In addition, it enables us to analyze an asymptotic behavior of the solution.

Citation: Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101
References:
[1]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202.   Google Scholar

[2]

T. Cazenave, Semilinear Schorödinger Equations, Courant Lecture Notes; 10, American Mathematical Society, 2003.  Google Scholar

[3]

C. N. Chen, S. Ei and Y. Morita, Weakly interacting wavefront dynamics in FitzHugh-Nagumo systems, preprint. Google Scholar

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional, J. Dyn. Diff. Equat., (2016). doi: 10.1007/s10884-016-9557-z.  Google Scholar

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690.  doi: 10.1137/130907793.  Google Scholar

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253.  doi: 10.1016/j.anihpc.2003.02.001.  Google Scholar

[7]

L. C. Evans, Partial Differential Equations, Vol. 19 of Grad. Stud. Math., American Mathematical Society, 2010.  Google Scholar

[8]

T. Kajiwara, A heteroclinic solution to a variational problem corresponding to FitzHugh-Nagumo type reaction-diffusion system with heterogeneity, Comm. Pure Appl. Anal., 16 (2017), 2133-2156.  doi: 10.3934/cpaa.2017106.  Google Scholar

[9]

K. Kurata and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Appl. Anal., 89 (2010), 1023-1035.  doi: 10.1080/00036811003717947.  Google Scholar

[10]

K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025-1038.   Google Scholar

[11]

Y. Nishiura, Coexistence of infinitely many stable solutions to reaction-diffusion system in the singular limit, Dynamics Reported: Expositions in Dynamical Systems, Springer, New York, 3 (1994), 25-103. doi: 10.1007/978-3-642-78234-3_2.  Google Scholar

[12]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134.  doi: 10.1016/S0022-0396(02)00084-0.  Google Scholar

show all references

References:
[1]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202.   Google Scholar

[2]

T. Cazenave, Semilinear Schorödinger Equations, Courant Lecture Notes; 10, American Mathematical Society, 2003.  Google Scholar

[3]

C. N. Chen, S. Ei and Y. Morita, Weakly interacting wavefront dynamics in FitzHugh-Nagumo systems, preprint. Google Scholar

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional, J. Dyn. Diff. Equat., (2016). doi: 10.1007/s10884-016-9557-z.  Google Scholar

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690.  doi: 10.1137/130907793.  Google Scholar

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253.  doi: 10.1016/j.anihpc.2003.02.001.  Google Scholar

[7]

L. C. Evans, Partial Differential Equations, Vol. 19 of Grad. Stud. Math., American Mathematical Society, 2010.  Google Scholar

[8]

T. Kajiwara, A heteroclinic solution to a variational problem corresponding to FitzHugh-Nagumo type reaction-diffusion system with heterogeneity, Comm. Pure Appl. Anal., 16 (2017), 2133-2156.  doi: 10.3934/cpaa.2017106.  Google Scholar

[9]

K. Kurata and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Appl. Anal., 89 (2010), 1023-1035.  doi: 10.1080/00036811003717947.  Google Scholar

[10]

K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025-1038.   Google Scholar

[11]

Y. Nishiura, Coexistence of infinitely many stable solutions to reaction-diffusion system in the singular limit, Dynamics Reported: Expositions in Dynamical Systems, Springer, New York, 3 (1994), 25-103. doi: 10.1007/978-3-642-78234-3_2.  Google Scholar

[12]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134.  doi: 10.1016/S0022-0396(02)00084-0.  Google Scholar

[1]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[2]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[6]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[9]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[10]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[11]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[12]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[13]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[14]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[17]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (116)
  • HTML views (240)
  • Cited by (0)

Other articles
by authors

[Back to Top]