We construct a heteroclinic solution to the FitzHugh-Nagumo type reaction-diffusion system (FHN RD system) with heterogeneity by the sub-supersolution method due to [
Citation: |
D. Bonheure
and L. Sanchez
, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006)
, 103-202.
![]() ![]() |
|
T. Cazenave, Semilinear Schorödinger Equations, Courant Lecture Notes; 10, American Mathematical Society, 2003.
![]() ![]() |
|
C. N. Chen, S. Ei and Y. Morita, Weakly interacting wavefront dynamics in FitzHugh-Nagumo systems, preprint.
![]() |
|
C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional, J. Dyn. Diff. Equat., (2016).
doi: 10.1007/s10884-016-9557-z.![]() ![]() |
|
C. N. Chen
, S. Y. Kung
and Y. Morita
, Planar standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014)
, 657-690.
doi: 10.1137/130907793.![]() ![]() ![]() |
|
E. N. Dancer
and S. Yan
, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004)
, 237-253.
doi: 10.1016/j.anihpc.2003.02.001.![]() ![]() ![]() |
|
L. C. Evans,
Partial Differential Equations, Vol. 19 of Grad. Stud. Math., American Mathematical Society, 2010.
![]() ![]() |
|
T. Kajiwara
, A heteroclinic solution to a variational problem corresponding to FitzHugh-Nagumo type reaction-diffusion system with heterogeneity, Comm. Pure Appl. Anal., 16 (2017)
, 2133-2156.
doi: 10.3934/cpaa.2017106.![]() ![]() ![]() |
|
K. Kurata
and H. Matsuzawa
, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Appl. Anal., 89 (2010)
, 1023-1035.
doi: 10.1080/00036811003717947.![]() ![]() ![]() |
|
K. Nakashima
, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000)
, 1025-1038.
![]() ![]() |
|
Y. Nishiura, Coexistence of infinitely many stable solutions to reaction-diffusion system in the singular limit, Dynamics Reported: Expositions in Dynamical Systems, Springer, New York, 3 (1994), 25-103.
doi: 10.1007/978-3-642-78234-3_2.![]() ![]() |
|
Y. Oshita
, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003)
, 110-134.
doi: 10.1016/S0022-0396(02)00084-0.![]() ![]() ![]() |