May  2018, 38(5): 2527-2539. doi: 10.3934/dcds.2018105

Stability of the distribution function for piecewise monotonic maps on the interval

1. 

Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic

2. 

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Received  August 2017 Revised  November 2017 Published  March 2018

Fund Project: The research was partially supported by the projects 42p11 and 38p10 of AKTION Česká republika – Österreich, and by RVO funding for IČ47813059.

For piecewise monotonic maps the notion of approximating distribution function is introduced. It is shown that for a mixing basic set it coincides with the usual distribution function. Moreover, it is proved that the approximating distribution function is upper semi-continuous under small perturbations of the map.

Citation: Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105
References:
[1]

M. Babilonová, Distributional chaos for triangular maps, Ann. Math. Sil., 13 (1999), 33-38.   Google Scholar

[2]

F. BalibreaB. SchweizerA. Sklar and J. Smítal, Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683-1694.  doi: 10.1142/S0218127403007539.  Google Scholar

[3]

F. BalibreaJ. Smítal and M. Štefánková, The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005), 1581-1583.   Google Scholar

[4]

A. Blokh, The 'spectral' decomposition for one-dimensional maps, in Dynamics Reported, Expositions in Dynamical Systems, (eds. : C. K. R. T. Jones, U. Kirchgraber, H. O. Walther), Springer, Berlin, 4 (1995), 1-59.  Google Scholar

[5]

F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields, 72 (1986), 359-386.  doi: 10.1007/BF00334191.  Google Scholar

[6]

R. Hric and M. Málek, Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006), 2469-2475.  doi: 10.1016/j.topol.2005.09.007.  Google Scholar

[7]

P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math., 80 (1992), 97-133.  doi: 10.1007/BF02808156.  Google Scholar

[8]

P. Raith, Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta Math. Univ. Comenian., 63 (1994), 39-53.   Google Scholar

[9]

P. Raith, The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem., 122 (1997), 37-55.   Google Scholar

[10]

P. Raith, The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 783-811.   Google Scholar

[11]

B. SchweizerA. Sklar and J. Smítal, Distributional (and other) chaos and its measurement, Real Anal. Exchange, 26 (2000/2001), 495-524.   Google Scholar

[12]

B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.  doi: 10.1090/S0002-9947-1994-1227094-X.  Google Scholar

show all references

References:
[1]

M. Babilonová, Distributional chaos for triangular maps, Ann. Math. Sil., 13 (1999), 33-38.   Google Scholar

[2]

F. BalibreaB. SchweizerA. Sklar and J. Smítal, Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683-1694.  doi: 10.1142/S0218127403007539.  Google Scholar

[3]

F. BalibreaJ. Smítal and M. Štefánková, The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005), 1581-1583.   Google Scholar

[4]

A. Blokh, The 'spectral' decomposition for one-dimensional maps, in Dynamics Reported, Expositions in Dynamical Systems, (eds. : C. K. R. T. Jones, U. Kirchgraber, H. O. Walther), Springer, Berlin, 4 (1995), 1-59.  Google Scholar

[5]

F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields, 72 (1986), 359-386.  doi: 10.1007/BF00334191.  Google Scholar

[6]

R. Hric and M. Málek, Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006), 2469-2475.  doi: 10.1016/j.topol.2005.09.007.  Google Scholar

[7]

P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math., 80 (1992), 97-133.  doi: 10.1007/BF02808156.  Google Scholar

[8]

P. Raith, Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta Math. Univ. Comenian., 63 (1994), 39-53.   Google Scholar

[9]

P. Raith, The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem., 122 (1997), 37-55.   Google Scholar

[10]

P. Raith, The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 783-811.   Google Scholar

[11]

B. SchweizerA. Sklar and J. Smítal, Distributional (and other) chaos and its measurement, Real Anal. Exchange, 26 (2000/2001), 495-524.   Google Scholar

[12]

B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.  doi: 10.1090/S0002-9947-1994-1227094-X.  Google Scholar

[1]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[2]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[5]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[6]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[7]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[8]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[9]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[12]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[13]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[14]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[15]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[16]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[17]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[20]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (130)
  • HTML views (249)
  • Cited by (0)

Other articles
by authors

[Back to Top]