• Previous Article
    Global existence in the critical space for the Thirring and Gross-Neveu models coupled with the electromagnetic field
  • DCDS Home
  • This Issue
  • Next Article
    Stability of the distribution function for piecewise monotonic maps on the interval
May  2018, 38(5): 2541-2554. doi: 10.3934/dcds.2018106

Constant slope models for finitely generated maps

Silesian University in Opava, Na Rybničku 626/1, 746 01 Opava, Czech Republic

Received  July 2017 Published  March 2018

We study countably monotone and Markov interval maps. We establish sufficient conditions for uniqueness of a conjugate map of constant slope. We explain how global window perturbation can be used to generate a large class of maps satisfying these conditions.

Citation: Samuel Roth. Constant slope models for finitely generated maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2541-2554. doi: 10.3934/dcds.2018106
References:
[1]

Ll. Alsedà and M. Misiurewicz, Semiconjugacy to a map of a constant slope, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3403-3413.  doi: 10.3934/dcdsb.2015.20.3403.  Google Scholar

[2]

J. Bobok, Semiconjugacy to a map of a constant slope, Studia Math., 208 (2012), 213-228.  doi: 10.4064/sm208-3-2.  Google Scholar

[3]

J. Bobok and H. Bruin, Constant slope maps and the Vere-Jones classification, Entropy, 18 (2016), Paper No. 234, 27 pp.  Google Scholar

[4]

J. Bobok and M. Soukenka, On piecewise affine interval maps with countably many laps, Discrete Cont. Dyn. Syst., 31 (2011), 753-762.  doi: 10.3934/dcds.2011.31.753.  Google Scholar

[5]

W. Feller, An Introduction to Probability Theory and Its Applications. 3rd Ed. Vol. 1. John Wiley & Sons, Inc., New York, 1950.  Google Scholar

[6]

T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc., 8 (1957), 937-942.  doi: 10.1090/S0002-9939-1957-0091564-3.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1995.  Google Scholar

[8]

B. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided, and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998.  Google Scholar

[9]

M. Misiurewicz and S. Roth, No semiconjugacy to a map of constant slope, Ergodic Theory Dynam. Systems, 36 (2016), 875-889.  doi: 10.1017/etds.2014.81.  Google Scholar

[10]

W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378.  doi: 10.1090/S0002-9947-1966-0197683-5.  Google Scholar

[11]

S. Ruette, Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[12]

D. Vere-Jones, Ergodic properties of nonnegative matrices-I, Pacific J. Math., 22 (1967), 361-386.  doi: 10.2140/pjm.1967.22.361.  Google Scholar

show all references

References:
[1]

Ll. Alsedà and M. Misiurewicz, Semiconjugacy to a map of a constant slope, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3403-3413.  doi: 10.3934/dcdsb.2015.20.3403.  Google Scholar

[2]

J. Bobok, Semiconjugacy to a map of a constant slope, Studia Math., 208 (2012), 213-228.  doi: 10.4064/sm208-3-2.  Google Scholar

[3]

J. Bobok and H. Bruin, Constant slope maps and the Vere-Jones classification, Entropy, 18 (2016), Paper No. 234, 27 pp.  Google Scholar

[4]

J. Bobok and M. Soukenka, On piecewise affine interval maps with countably many laps, Discrete Cont. Dyn. Syst., 31 (2011), 753-762.  doi: 10.3934/dcds.2011.31.753.  Google Scholar

[5]

W. Feller, An Introduction to Probability Theory and Its Applications. 3rd Ed. Vol. 1. John Wiley & Sons, Inc., New York, 1950.  Google Scholar

[6]

T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc., 8 (1957), 937-942.  doi: 10.1090/S0002-9939-1957-0091564-3.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1995.  Google Scholar

[8]

B. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided, and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998.  Google Scholar

[9]

M. Misiurewicz and S. Roth, No semiconjugacy to a map of constant slope, Ergodic Theory Dynam. Systems, 36 (2016), 875-889.  doi: 10.1017/etds.2014.81.  Google Scholar

[10]

W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378.  doi: 10.1090/S0002-9947-1966-0197683-5.  Google Scholar

[11]

S. Ruette, Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[12]

D. Vere-Jones, Ergodic properties of nonnegative matrices-I, Pacific J. Math., 22 (1967), 361-386.  doi: 10.2140/pjm.1967.22.361.  Google Scholar

Figure 1.  The production of a finitely generated map
Table 1.  Some countably monotone maps from the literature -cf. Section 7.2
Graph
Source [3,§ 7.1] [4,§ 4] [9,§ 8] [3,§ 7.2.1] [3,§ 7.2.1]
Vere-Jones classification Recurrent Transient Recurrent Recurrent Transient
Finitely generated No No No Yes Yes
Constant slope models None For all $\lambda\geq\exp h(f)$ For all $\lambda\geq\exp h(f)$ Unique, $\lambda=\exp h(f)$ None
Graph
Source [3,§ 7.1] [4,§ 4] [9,§ 8] [3,§ 7.2.1] [3,§ 7.2.1]
Vere-Jones classification Recurrent Transient Recurrent Recurrent Transient
Finitely generated No No No Yes Yes
Constant slope models None For all $\lambda\geq\exp h(f)$ For all $\lambda\geq\exp h(f)$ Unique, $\lambda=\exp h(f)$ None
[1]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[2]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[3]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[4]

Mark F. Demers, Christopher J. Ianzano, Philip Mayer, Peter Morfe, Elizabeth C. Yoo. Limiting distributions for countable state topological Markov chains with holes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 105-130. doi: 10.3934/dcds.2017005

[5]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[6]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[7]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[8]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[9]

Yair Daon. Bernoullicity of equilibrium measures on countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4003-4015. doi: 10.3934/dcds.2013.33.4003

[10]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131

[11]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[12]

Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018

[13]

Michael Schraudner. Projectional entropy and the electrical wire shift. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 333-346. doi: 10.3934/dcds.2010.26.333

[14]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[15]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[16]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[17]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[18]

Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969

[19]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[20]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (45)
  • HTML views (181)
  • Cited by (0)

Other articles
by authors

[Back to Top]