We prove global well-posedness for the coupled Maxwell-Dirac-Thirring-Gross-Neveu equations in one space dimension, with data for the Dirac spinor in the critical space $L^2(\mathbb{R})$. In particular, we recover earlier results of Candy and Huh for the Thirring and Gross-Neveu models, respectively, without the coupling to the electromagnetic field, but the function spaces we introduce allow for a greatly simplified proof. We also apply our method to prove local well-posedness in $L^2(\mathbb{R})$ for a quadratic Dirac equation, improving an earlier result of Tesfahun and the author.
Citation: |
A. Bachelot
, Global Cauchy problem for semilinear hyperbolic systems with nonlocal interactions. Applications to Dirac equations, J. Math. Pures Appl., 86 (2006)
, 201-236.
doi: 10.1016/j.matpur.2006.01.006.![]() ![]() ![]() |
|
I. Bejenaru
and S. Herr
, The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Comm. Math. Phys., 335 (2015)
, 43-82.
doi: 10.1007/s00220-014-2164-0.![]() ![]() ![]() |
|
N. Bournaveas
, A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension, J. Funct. Anal., 173 (2000)
, 203-213.
doi: 10.1006/jfan.1999.3559.![]() ![]() ![]() |
|
N. Bournaveas
, Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension, Discrete Contin. Dyn. Syst., 20 (2008)
, 605-616.
![]() ![]() |
|
N. Bournaveas
and T. Candy
, Global well-posedness for the massless cubic Dirac equation, Int. Math. Res. Not. IMRN, (2016)
, 6735-6828.
![]() ![]() |
|
N. Boussaïd
and A. Comech
, On spectral stability of the nonlinear Dirac equation, J. Funct. Anal., 271 (2016)
, 1462-1524.
doi: 10.1016/j.jfa.2016.04.013.![]() ![]() ![]() |
|
T. Candy and H. Lindblad, Long Range Scattering for the cubic Dirac Equation on $\mathbf{R}^{1+1}$, arXiv e-prints 1606.08397 (2016).
![]() |
|
T. Candy
, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011)
, 643-666.
![]() ![]() |
|
_______, Bilinear estimates and applications to global well-posedness for the Dirac-KleinGordon equation on $\Bbb R^{1+1}$, J. Hyperbolic Differ. Equ., 10 (2013), 1-35.
doi: 10.1142/S021989161350001X.![]() ![]() ![]() |
|
J. M. Chadam
, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Functional Analysis, 13 (1973)
, 173-184.
doi: 10.1016/0022-1236(73)90043-8.![]() ![]() ![]() |
|
A. Contreras
, D. E. Pelinovsky
and Y. Shimabukuro
, $L^2$ orbital stability of Dirac solitons in the massive Thirring model, Comm. Partial Differential Equations, 41 (2016)
, 227-255.
doi: 10.1080/03605302.2015.1123272.![]() ![]() ![]() |
|
P. D'Ancona
, D. Foschi
and S. Selberg
, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 9 (2007)
, 877-899.
![]() ![]() |
|
_______, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118.![]() ![]() ![]() |
|
P. D'Ancona
and S. Selberg
, Global well-posedness of the Maxwell-Dirac system in two space dimensions, J. Funct. Anal., 260 (2011)
, 2300-2365.
doi: 10.1016/j.jfa.2010.12.010.![]() ![]() ![]() |
|
V. Delgado
, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978)
, 289-296.
doi: 10.1090/S0002-9939-1978-0463658-5.![]() ![]() ![]() |
|
J.-P. Dias
and M. Figueira
, Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986)
, 309-316.
![]() ![]() |
|
A. Grünrock
and H. Pecher
, Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations, 35 (2010)
, 89-112.
![]() ![]() |
|
H. Huh, Global charge solutions of Maxwell-Dirac equations in $\Bbb R^{1+1}$, J. Phys. A, 43 (2010), 445206, 7pp.
doi: 10.1088/1751-8113/43/44/445206.![]() ![]() ![]() |
|
_______, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.
doi: 10.1016/j.jmaa.2011.02.042.![]() ![]() ![]() |
|
_______, Global solutions to Gross-Neveu equation, Lett. Math. Phys., 103 (2013), 927-931.
doi: 10.1007/s11005-013-0622-9.![]() ![]() ![]() |
|
H. Huh
and B. Moon
, Low regularity well-posedness for Gross-Neveu equations, Commun. Pure Appl. Anal., 14 (2015)
, 1903-1913.
doi: 10.3934/cpaa.2015.14.1903.![]() ![]() ![]() |
|
M. Ikeda, Final state problem for the Dirac-Klein-Gordon equations in two space dimensions, Abstr. Appl. Anal., (2013), Art. ID 273959, 11pp.
![]() ![]() |
|
S. Machihara
, One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005)
, 277-290.
doi: 10.3934/dcds.2005.13.277.![]() ![]() ![]() |
|
_______, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.
doi: 10.1142/S0219199707002484.![]() ![]() ![]() |
|
S. Machihara
, K. Nakanishi
and K. Tsugawa
, Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010)
, 403-451.
doi: 10.1215/0023608X-2009-018.![]() ![]() ![]() |
|
S. Machihara
and M. Okamoto
, Remarks on ill-posedness for the Dirac-Klein-Gordon system, Dyn. Partial Differ. Equ., 13 (2016)
, 179-190.
doi: 10.4310/DPDE.2016.v13.n3.a1.![]() ![]() ![]() |
|
I. P. Naumkin
, Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016)
, 1633-1664.
doi: 10.1016/j.jmaa.2015.09.049.![]() ![]() ![]() |
|
_______, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.
doi: 10.1016/j.jde.2016.07.003.![]() ![]() ![]() |
|
M. Okamoto
, Well-posedness and ill-posedness of the Cauchy problem for the Maxwell-Dirac system in $1+1$ space time dimensions, Adv. Differential Equations, 18 (2013)
, 179-199.
![]() ![]() |
|
H. Pecher
, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014)
, 673-685.
![]() ![]() |
|
S. Selberg
and A. Tesfahun
, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010)
, 265-278.
![]() ![]() |
|
A. Tesfahun
, Global well-posedness of the 1D Dirac-Klein-Gordon system in Sobolev spaces of negative index, J. Hyperbolic Differ. Equ., 6 (2009)
, 631-661.
doi: 10.1142/S0219891609001952.![]() ![]() ![]() |
|
X. Wang
, On global existence of 3D charge critical Dirac-Klein-Gordon system, Int. Math. Res. Not. IMRN, (2015)
, 10801-10846.
![]() ![]() |
|
A. You
and Y. Zhang
, Global solution to Maxwell-Dirac equations in $1+1$ dimensions, Nonlinear Anal., 98 (2014)
, 226-236.
doi: 10.1016/j.na.2013.12.014.![]() ![]() ![]() |
|
Y. Zhang
and Q. Zhao
, Global solution to nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions, Nonlinear Anal., 118 (2015)
, 82-96.
doi: 10.1016/j.na.2015.02.007.![]() ![]() ![]() |