• Previous Article
    Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system
  • DCDS Home
  • This Issue
  • Next Article
    On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components
May  2018, 38(5): 2629-2653. doi: 10.3934/dcds.2018111

Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001, China

* Corresponding author: Zhijian Yang

Received  May 2017 Revised  November 2017 Published  March 2018

Fund Project: This work is supported by National Natural Science Foundation of China (No.11671367)

In this paper, we are concerned with the existence and stability of pullback exponential attractors for a non-autonomous dynamical system. (ⅰ) We propose two new criteria for the discrete dynamical system and continuous one, respectively. (ⅱ) By applying the criteria to the non-autonomous Kirchhoff wave models with structural damping and supercritical nonlinearity we construct a family of pullback exponential attractors which are stable with respect to perturbations.

Citation: Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111
References:
[1]

S. Bosia and S. Gatti, Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D, Dynamics of PDE, 11 (2014), 1-38. doi: 10.4310/DPDE.2014.v11.n1.a1. Google Scholar

[2]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J.Differential Equations, 236 (2007), 570-603. doi: 10.1016/j.jde.2007.01.017. Google Scholar

[3]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071. doi: 10.3934/cpaa.2013.12.3047. Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1114-1165. Google Scholar

[5]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional NonAutonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. Google Scholar

[6]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. Google Scholar

[7]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106. Google Scholar

[8]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[9]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015. Google Scholar

[10]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations Part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765. doi: 10.1016/j.jmaa.2011.03.053. Google Scholar

[11]

R. Czaja, Pullback exponential attractors with admissible exponential growth in the past, Nonlinear Analysis, 104 (2014), 90-108. doi: 10.1016/j.na.2014.03.020. Google Scholar

[12]

M. EfendievA. Miranville and S. Zelik, Exponential Attractors for a Nonlinear Reaction-Diffusion System in $ \mathbb{R}^3$, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713-718. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[13]

M. EfendievS. Zelik and A. Miranville, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proceedings of the Royal Society of Edinburgh, 135 (2005), 703-730. doi: 10.1017/S030821050000408X. Google Scholar

[14]

M. EfendievY. Yamamoto and A. Yagi, Exponential attractors for non-autonomous dissipative systems, Journal of the Mathematical Society of Japan, 63 (2011), 647-673. doi: 10.2969/jmsj/06320647. Google Scholar

[15]

G. Kirchhoff, Vorlesungen über Mechanik, (German) [Lectures on Mechanics], Teubner, Stuttgart, 1883.Google Scholar

[16]

P. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112. doi: 10.1142/S0219493703000632. Google Scholar

[17]

K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301-309. Google Scholar

[18]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357. Google Scholar

[19]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701. Google Scholar

[20]

J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 146 (1986), 65-96. Google Scholar

[21]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. Google Scholar

[22]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Cont. Dyn. Sys., 33 (2013), 3189-3209. doi: 10.3934/dcds.2013.33.3189. Google Scholar

[23]

Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278. doi: 10.1016/j.jde.2010.09.024. Google Scholar

[24]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equation with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510. doi: 10.1016/j.jmaa.2016.04.079. Google Scholar

[25]

S. F. Zhou and X. Y. Han, Pullback exponential attractors for non-autonomous lattice systems, J Dyn. Diff. Equat., 24 (2012), 601-631. doi: 10.1007/s10884-012-9260-7. Google Scholar

show all references

References:
[1]

S. Bosia and S. Gatti, Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D, Dynamics of PDE, 11 (2014), 1-38. doi: 10.4310/DPDE.2014.v11.n1.a1. Google Scholar

[2]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J.Differential Equations, 236 (2007), 570-603. doi: 10.1016/j.jde.2007.01.017. Google Scholar

[3]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071. doi: 10.3934/cpaa.2013.12.3047. Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1114-1165. Google Scholar

[5]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional NonAutonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. Google Scholar

[6]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. Google Scholar

[7]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106. Google Scholar

[8]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[9]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015. Google Scholar

[10]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations Part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765. doi: 10.1016/j.jmaa.2011.03.053. Google Scholar

[11]

R. Czaja, Pullback exponential attractors with admissible exponential growth in the past, Nonlinear Analysis, 104 (2014), 90-108. doi: 10.1016/j.na.2014.03.020. Google Scholar

[12]

M. EfendievA. Miranville and S. Zelik, Exponential Attractors for a Nonlinear Reaction-Diffusion System in $ \mathbb{R}^3$, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713-718. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[13]

M. EfendievS. Zelik and A. Miranville, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proceedings of the Royal Society of Edinburgh, 135 (2005), 703-730. doi: 10.1017/S030821050000408X. Google Scholar

[14]

M. EfendievY. Yamamoto and A. Yagi, Exponential attractors for non-autonomous dissipative systems, Journal of the Mathematical Society of Japan, 63 (2011), 647-673. doi: 10.2969/jmsj/06320647. Google Scholar

[15]

G. Kirchhoff, Vorlesungen über Mechanik, (German) [Lectures on Mechanics], Teubner, Stuttgart, 1883.Google Scholar

[16]

P. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112. doi: 10.1142/S0219493703000632. Google Scholar

[17]

K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301-309. Google Scholar

[18]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357. Google Scholar

[19]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701. Google Scholar

[20]

J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 146 (1986), 65-96. Google Scholar

[21]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. Google Scholar

[22]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Cont. Dyn. Sys., 33 (2013), 3189-3209. doi: 10.3934/dcds.2013.33.3189. Google Scholar

[23]

Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278. doi: 10.1016/j.jde.2010.09.024. Google Scholar

[24]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equation with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510. doi: 10.1016/j.jmaa.2016.04.079. Google Scholar

[25]

S. F. Zhou and X. Y. Han, Pullback exponential attractors for non-autonomous lattice systems, J Dyn. Diff. Equat., 24 (2012), 601-631. doi: 10.1007/s10884-012-9260-7. Google Scholar

[1]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[2]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019172

[3]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[4]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[5]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[7]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[8]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[9]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[10]

Yacine Chitour, Guilherme Mazanti, Mario Sigalotti. Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 563-601. doi: 10.3934/nhm.2016010

[11]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[12]

Maciej J. Capiński, Piotr Zgliczyński. Covering relations and non-autonomous perturbations of ODEs. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 281-293. doi: 10.3934/dcds.2006.14.281

[13]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[14]

Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399

[15]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[16]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[17]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[18]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[19]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[20]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (90)
  • HTML views (226)
  • Cited by (0)

Other articles
by authors

[Back to Top]