In this paper, we are concerned with the Cauchy problem for a new two-component Camassa-Holm system with the effect of the Coriolis force in the rotating fluid, which is a model in the equatorial water waves. We first investigate the local well-posedness of the system in $ B_{p,r}^s× B_{p,r}^{s-1}$ with $s>\max\{1+\frac{1}{p},\frac{3}{2},2-\frac{1}{p}\}$, $p,r∈ [1,∞]$ by using the transport theory in Besov space. Then by means of the logarithmic interpolation inequality and the Osgood's lemma, we establish the local well-posedness in the critical Besov space $ B_{2,1}^{3/2}× B_{2,1}^{1/2}$, and we present a blow-up result with the initial data in critical Besov space by virtue of the conservation law. Finally, we study the Gevrey regularity and analyticity of solutions to the system in a range of Gevrey-Sobolev spaces in the sense of Hardamard. Moreover, a precise lower bound of the lifespan is obtained.
Citation: |
[1] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011.
![]() ![]() |
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z.![]() ![]() ![]() |
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.
doi: 10.1142/S0219530507000857.![]() ![]() ![]() |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
[5] |
M. Chen, S. Liu and Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15.
doi: 10.1007/s11005-005-0041-7.![]() ![]() ![]() |
[6] |
Y. Chen, H. Gao and Y. Liu, On the cauchy problem for the two-component Dullin-Gottwald-Holm system, Discrete Contin. Dyn. Syst., 33 (2013), 3407-3441.
doi: 10.3934/dcds.2013.33.3407.![]() ![]() ![]() |
[7] |
A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Expo. Math., 15 (1997), 53-85.
![]() ![]() |
[8] |
A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757.![]() ![]() ![]() |
[9] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A., 457 (2001), 953-970.
doi: 10.1098/rspa.2000.0701.![]() ![]() ![]() |
[10] |
A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132.
doi: 10.1016/j.physleta.2008.10.050.![]() ![]() ![]() |
[11] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm.Super. Pisa Cl.Sci., 26 (1998), 303-328.
![]() ![]() |
[12] |
A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.![]() ![]() ![]() |
[13] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586.![]() ![]() ![]() |
[14] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.
doi: 10.1007/s002200050801.![]() ![]() ![]() |
[15] |
A. Constantin and W. Strauss, Stability of solitons, Commun. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.![]() ![]() ![]() |
[16] |
A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422.
doi: 10.1007/s00332-002-0517-x.![]() ![]() ![]() |
[17] |
R. Danchin, A few remarks on the Camassa-Holm equation, Differ. Integral. Equ., 14 (2001), 953-988.
![]() ![]() |
[18] |
R. Danchin, Fourier analysis methods for PDEs, Lecture notes, 14 (2005).
![]() |
[19] |
J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.
doi: 10.3934/dcds.2007.19.493.![]() ![]() ![]() |
[20] |
J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293.
doi: 10.3934/jgm.2015.7.281.![]() ![]() ![]() |
[21] |
G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A: Math. Gen., 39 (2006), 327-342.
doi: 10.1088/0305-4470/39/2/004.![]() ![]() ![]() |
[22] |
L. Fan, H. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89.
doi: 10.1016/j.aim.2015.11.049.![]() ![]() ![]() |
[23] |
C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.
doi: 10.1016/0022-1236(89)90015-3.![]() ![]() ![]() |
[24] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditary symmetries, Phy. D., 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X.![]() ![]() ![]() |
[25] |
C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations., 248 (2010), 2003-2014.
doi: 10.1016/j.jde.2009.08.002.![]() ![]() ![]() |
[26] |
C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154.
doi: 10.1016/j.jfa.2010.11.015.![]() ![]() ![]() |
[27] |
G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.
doi: 10.1007/s00209-009-0660-2.![]() ![]() ![]() |
[28] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.
doi: 10.1016/j.jfa.2010.02.008.![]() ![]() ![]() |
[29] |
F. Guo and R. Wang, On the persistence and unique continuation properties for an integrable two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 96 (2014), 38-46.
doi: 10.1016/j.na.2013.10.021.![]() ![]() ![]() |
[30] |
F. Guo, H. Gao and Y. Liu, On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system, J. Lond. Math. Soc., 86 (2012), 810-834.
doi: 10.1112/jlms/jds035.![]() ![]() ![]() |
[31] |
Z. Guo and M. Zhu, Wave breaking for a modified two-component Camassa-Holm system, J. Differential Equations., 252 (2012), 2759-2770.
doi: 10.1016/j.jde.2011.09.041.![]() ![]() ![]() |
[32] |
Y. Han, F. Guo and H. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear. Sci., 23 (2013), 617-656.
doi: 10.1007/s00332-012-9163-0.![]() ![]() ![]() |
[33] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-A Lagrangian point of view, Comm. Partial Differential Equations., 32 (2007), 1511-1549.
doi: 10.1080/03605300601088674.![]() ![]() ![]() |
[34] |
R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396.
doi: 10.1016/j.wavemoti.2009.06.012.![]() ![]() ![]() |
[35] |
X. Li and L. Zhang, The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities, Discrete Contin. Dyn. Syst., 37 (2017), 3301-3325.
doi: 10.3934/dcds.2017140.![]() ![]() ![]() |
[36] |
X. Liu and Z. Yin, Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 88 (2013), 1-15.
doi: 10.1016/j.na.2013.04.008.![]() ![]() ![]() |
[37] |
W. Luo and Z. Yin, Gevrey regularity and analyticity for Camassa-Holm type systems, arXiv preprint, arXiv: 1507.05250, 2015.
![]() |
[38] |
L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalevski theorem, J. Differ Geom., 6 (1972), 561-576.
doi: 10.4310/jdg/1214430643.![]() ![]() ![]() |
[39] |
T. Nishida, A note on a theorem of Nirenberg, J. Differ Geom., 12 (1977), 629-633.
doi: 10.4310/jdg/1214434231.![]() ![]() ![]() |
[40] |
P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Physical Review E., 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900.![]() ![]() ![]() |
[41] |
L. V. Ovsyannikov, Singular operators in Banach spaces scales, Doklady Akademii Nauk SSSR.
![]() |
[42] |
L. V. Ovsyannikov, Non-local Cauchy problems in fluid dynamics, Actes du Congrés International des Mathématiciens, 3 (1971), 137-142.
![]() ![]() |
[43] |
L. V. Ovsyannikov, A nonlinear Cauchy problem in a scale of Banach spaces, Doklady Akademii Nauk SSSR., 200 (1971), 789-792.
![]() ![]() |
[44] |
G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X.![]() ![]() ![]() |
[45] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.![]() ![]() ![]() |
[46] |
L. Zhang and B. Liu, On the Cauchy problem for a class of shallow water wave equations with (k+1)-order nonlinearities, J. Math. Anal. Appl., 445 (2017), 151-185.
doi: 10.1016/j.jmaa.2016.07.056.![]() ![]() ![]() |
[47] |
L. Zhang and X. Li, The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system, Nonlinear Anal. RWA., 35 (2017), 414-440.
doi: 10.1016/j.nonrwa.2016.12.001.![]() ![]() ![]() |
[48] |
M. Zhu and J. Xu, On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system, J. Math. Anal. Appl., 391 (2012), 415-428.
doi: 10.1016/j.jmaa.2012.02.058.![]() ![]() ![]() |