May  2018, 38(5): 2655-2685. doi: 10.3934/dcds.2018112

Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system

School of Mathematics and Statistics, Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

* Corresponding author

Received  July 2017 Revised  December 2017 Published  March 2018

Fund Project: This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11571126 and No. 11701198, the China Postdoctoral Science Foundation funded project under Grant No. 2017M622397

In this paper, we are concerned with the Cauchy problem for a new two-component Camassa-Holm system with the effect of the Coriolis force in the rotating fluid, which is a model in the equatorial water waves. We first investigate the local well-posedness of the system in $ B_{p,r}^s× B_{p,r}^{s-1}$ with $s>\max\{1+\frac{1}{p},\frac{3}{2},2-\frac{1}{p}\}$, $p,r∈ [1,∞]$ by using the transport theory in Besov space. Then by means of the logarithmic interpolation inequality and the Osgood's lemma, we establish the local well-posedness in the critical Besov space $ B_{2,1}^{3/2}× B_{2,1}^{1/2}$, and we present a blow-up result with the initial data in critical Besov space by virtue of the conservation law. Finally, we study the Gevrey regularity and analyticity of solutions to the system in a range of Gevrey-Sobolev spaces in the sense of Hardamard. Moreover, a precise lower bound of the lifespan is obtained.

Citation: Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

M. ChenS. Liu and Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7. Google Scholar

[6]

Y. ChenH. Gao and Y. Liu, On the cauchy problem for the two-component Dullin-Gottwald-Holm system, Discrete Contin. Dyn. Syst., 33 (2013), 3407-3441. doi: 10.3934/dcds.2013.33.3407. Google Scholar

[7]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Expo. Math., 15 (1997), 53-85. Google Scholar

[8]

A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. Google Scholar

[9]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A., 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm.Super. Pisa Cl.Sci., 26 (1998), 303-328. Google Scholar

[12]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801. Google Scholar

[15]

A. Constantin and W. Strauss, Stability of solitons, Commun. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[16]

A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x. Google Scholar

[17]

R. Danchin, A few remarks on the Camassa-Holm equation, Differ. Integral. Equ., 14 (2001), 953-988. Google Scholar

[18]

R. Danchin, Fourier analysis methods for PDEs, Lecture notes, 14 (2005). Google Scholar

[19]

J. EscherO. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. Google Scholar

[20]

J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293. doi: 10.3934/jgm.2015.7.281. Google Scholar

[21]

G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A: Math. Gen., 39 (2006), 327-342. doi: 10.1088/0305-4470/39/2/004. Google Scholar

[22]

L. FanH. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89. doi: 10.1016/j.aim.2015.11.049. Google Scholar

[23]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369. doi: 10.1016/0022-1236(89)90015-3. Google Scholar

[24]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditary symmetries, Phy. D., 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[25]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations., 248 (2010), 2003-2014. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[26]

C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154. doi: 10.1016/j.jfa.2010.11.015. Google Scholar

[27]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2. Google Scholar

[28]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008. Google Scholar

[29]

F. Guo and R. Wang, On the persistence and unique continuation properties for an integrable two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 96 (2014), 38-46. doi: 10.1016/j.na.2013.10.021. Google Scholar

[30]

F. GuoH. Gao and Y. Liu, On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system, J. Lond. Math. Soc., 86 (2012), 810-834. doi: 10.1112/jlms/jds035. Google Scholar

[31]

Z. Guo and M. Zhu, Wave breaking for a modified two-component Camassa-Holm system, J. Differential Equations., 252 (2012), 2759-2770. doi: 10.1016/j.jde.2011.09.041. Google Scholar

[32]

Y. HanF. Guo and H. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear. Sci., 23 (2013), 617-656. doi: 10.1007/s00332-012-9163-0. Google Scholar

[33]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-A Lagrangian point of view, Comm. Partial Differential Equations., 32 (2007), 1511-1549. doi: 10.1080/03605300601088674. Google Scholar

[34]

R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012. Google Scholar

[35]

X. Li and L. Zhang, The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities, Discrete Contin. Dyn. Syst., 37 (2017), 3301-3325. doi: 10.3934/dcds.2017140. Google Scholar

[36]

X. Liu and Z. Yin, Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 88 (2013), 1-15. doi: 10.1016/j.na.2013.04.008. Google Scholar

[37]

W. Luo and Z. Yin, Gevrey regularity and analyticity for Camassa-Holm type systems, arXiv preprint, arXiv: 1507.05250, 2015.Google Scholar

[38]

L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalevski theorem, J. Differ Geom., 6 (1972), 561-576. doi: 10.4310/jdg/1214430643. Google Scholar

[39]

T. Nishida, A note on a theorem of Nirenberg, J. Differ Geom., 12 (1977), 629-633. doi: 10.4310/jdg/1214434231. Google Scholar

[40]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Physical Review E., 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900. Google Scholar

[41]

L. V. Ovsyannikov, Singular operators in Banach spaces scales, Doklady Akademii Nauk SSSR.Google Scholar

[42]

L. V. Ovsyannikov, Non-local Cauchy problems in fluid dynamics, Actes du Congrés International des Mathématiciens, 3 (1971), 137-142. Google Scholar

[43]

L. V. Ovsyannikov, A nonlinear Cauchy problem in a scale of Banach spaces, Doklady Akademii Nauk SSSR., 200 (1971), 789-792. Google Scholar

[44]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X. Google Scholar

[45]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. Google Scholar

[46]

L. Zhang and B. Liu, On the Cauchy problem for a class of shallow water wave equations with (k+1)-order nonlinearities, J. Math. Anal. Appl., 445 (2017), 151-185. doi: 10.1016/j.jmaa.2016.07.056. Google Scholar

[47]

L. Zhang and X. Li, The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system, Nonlinear Anal. RWA., 35 (2017), 414-440. doi: 10.1016/j.nonrwa.2016.12.001. Google Scholar

[48]

M. Zhu and J. Xu, On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system, J. Math. Anal. Appl., 391 (2012), 415-428. doi: 10.1016/j.jmaa.2012.02.058. Google Scholar

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

M. ChenS. Liu and Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7. Google Scholar

[6]

Y. ChenH. Gao and Y. Liu, On the cauchy problem for the two-component Dullin-Gottwald-Holm system, Discrete Contin. Dyn. Syst., 33 (2013), 3407-3441. doi: 10.3934/dcds.2013.33.3407. Google Scholar

[7]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Expo. Math., 15 (1997), 53-85. Google Scholar

[8]

A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. Google Scholar

[9]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A., 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm.Super. Pisa Cl.Sci., 26 (1998), 303-328. Google Scholar

[12]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801. Google Scholar

[15]

A. Constantin and W. Strauss, Stability of solitons, Commun. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[16]

A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x. Google Scholar

[17]

R. Danchin, A few remarks on the Camassa-Holm equation, Differ. Integral. Equ., 14 (2001), 953-988. Google Scholar

[18]

R. Danchin, Fourier analysis methods for PDEs, Lecture notes, 14 (2005). Google Scholar

[19]

J. EscherO. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. Google Scholar

[20]

J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293. doi: 10.3934/jgm.2015.7.281. Google Scholar

[21]

G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A: Math. Gen., 39 (2006), 327-342. doi: 10.1088/0305-4470/39/2/004. Google Scholar

[22]

L. FanH. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89. doi: 10.1016/j.aim.2015.11.049. Google Scholar

[23]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369. doi: 10.1016/0022-1236(89)90015-3. Google Scholar

[24]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditary symmetries, Phy. D., 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[25]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations., 248 (2010), 2003-2014. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[26]

C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154. doi: 10.1016/j.jfa.2010.11.015. Google Scholar

[27]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2. Google Scholar

[28]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008. Google Scholar

[29]

F. Guo and R. Wang, On the persistence and unique continuation properties for an integrable two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 96 (2014), 38-46. doi: 10.1016/j.na.2013.10.021. Google Scholar

[30]

F. GuoH. Gao and Y. Liu, On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system, J. Lond. Math. Soc., 86 (2012), 810-834. doi: 10.1112/jlms/jds035. Google Scholar

[31]

Z. Guo and M. Zhu, Wave breaking for a modified two-component Camassa-Holm system, J. Differential Equations., 252 (2012), 2759-2770. doi: 10.1016/j.jde.2011.09.041. Google Scholar

[32]

Y. HanF. Guo and H. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear. Sci., 23 (2013), 617-656. doi: 10.1007/s00332-012-9163-0. Google Scholar

[33]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-A Lagrangian point of view, Comm. Partial Differential Equations., 32 (2007), 1511-1549. doi: 10.1080/03605300601088674. Google Scholar

[34]

R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012. Google Scholar

[35]

X. Li and L. Zhang, The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities, Discrete Contin. Dyn. Syst., 37 (2017), 3301-3325. doi: 10.3934/dcds.2017140. Google Scholar

[36]

X. Liu and Z. Yin, Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 88 (2013), 1-15. doi: 10.1016/j.na.2013.04.008. Google Scholar

[37]

W. Luo and Z. Yin, Gevrey regularity and analyticity for Camassa-Holm type systems, arXiv preprint, arXiv: 1507.05250, 2015.Google Scholar

[38]

L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalevski theorem, J. Differ Geom., 6 (1972), 561-576. doi: 10.4310/jdg/1214430643. Google Scholar

[39]

T. Nishida, A note on a theorem of Nirenberg, J. Differ Geom., 12 (1977), 629-633. doi: 10.4310/jdg/1214434231. Google Scholar

[40]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Physical Review E., 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900. Google Scholar

[41]

L. V. Ovsyannikov, Singular operators in Banach spaces scales, Doklady Akademii Nauk SSSR.Google Scholar

[42]

L. V. Ovsyannikov, Non-local Cauchy problems in fluid dynamics, Actes du Congrés International des Mathématiciens, 3 (1971), 137-142. Google Scholar

[43]

L. V. Ovsyannikov, A nonlinear Cauchy problem in a scale of Banach spaces, Doklady Akademii Nauk SSSR., 200 (1971), 789-792. Google Scholar

[44]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X. Google Scholar

[45]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. Google Scholar

[46]

L. Zhang and B. Liu, On the Cauchy problem for a class of shallow water wave equations with (k+1)-order nonlinearities, J. Math. Anal. Appl., 445 (2017), 151-185. doi: 10.1016/j.jmaa.2016.07.056. Google Scholar

[47]

L. Zhang and X. Li, The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system, Nonlinear Anal. RWA., 35 (2017), 414-440. doi: 10.1016/j.nonrwa.2016.12.001. Google Scholar

[48]

M. Zhu and J. Xu, On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system, J. Math. Anal. Appl., 391 (2012), 415-428. doi: 10.1016/j.jmaa.2012.02.058. Google Scholar

[1]

Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2019160

[2]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[3]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[4]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[5]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[6]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[7]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[8]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[9]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[10]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[11]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[12]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[13]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[14]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[15]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[16]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[17]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[18]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[19]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[20]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (118)
  • HTML views (217)
  • Cited by (1)

Other articles
by authors

[Back to Top]