June  2018, 38(6): 2687-2716. doi: 10.3934/dcds.2018113

Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel

Special invited paper

Received  July 2017 Revised  November 2017 Published  April 2018

The paper is primarily concerned with the asymptotic behavior as $N\to∞$ of averages of nonconventional arrays having the form ${N^{ - 1}}\sum\limits_{n = 1}^N {\prod\limits_{j = 1}^\ell {{T^{{P_j}(n,N)}}} } {f_j}$ where $f_j$'s are bounded measurable functions, $T$ is an invertible measure preserving transformation and $P_j$'s are polynomials of $n$ and $N$ taking on integer values on integers. It turns out that when $T$ is weakly mixing and $P_j(n, N) = p_jn+q_jN$ are linear or, more generally, have the form $P_j(n, N) = P_j(n)+Q_j(N)$ for some integer valued polynomials $P_j$ and $Q_j$ then the above averages converge in $L^2$ but for general polynomials $P_j$ of both $n$ and $N$ the $L^2$ convergence can be ensured even in the "conventional" case $\ell = 1$ only when $T$ is strongly mixing while for $\ell>1$ strong $2\ell$-mixing should be assumed. Studying also weakly mixing and compact extensions and relying on Furstenberg's structure theorem we derive an extension of Szemerédi's theorem saying that for any subset of integers $\Lambda $ with positive upper density there exists a subset ${\cal N}_\Lambda $ of positive integers having uniformly bounded gaps such that for $N∈{\cal N}_\Lambda $ and at least $\varepsilon N, \, \varepsilon >0$ of $n$'s all numbers $p_jn+q_jN, \, j = 1, ..., \ell, $ belong to $\Lambda $. We obtain also a version of these results for several commuting transformations which yields a corresponding extension of the multidimensional Szemerédi theorem.

Citation: Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113
References:
[1]

T. Austin, Non-conventional ergodic averages for several commuting actions of an amenable group, J. D'Analyse Math., 130 (2016), 243-274. doi: 10.1007/s11854-016-0036-6.

[2]

V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.

[3]

V. BergelsonB. HostR. McCutcheon and F. Parreau, Aspects of uniformity in recurrence, Colloq. Math., 84/85 (2000), 549-576.

[4]

V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753. doi: 10.1090/S0894-0347-96-00194-4.

[5]

V. BergelsonA. Leibman and E. Lesigne, Intersective polynomials and polynomial Szemerédi theorem, Adv. Math., 219 (2008), 369-388. doi: 10.1016/j.aim.2008.05.008.

[6]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., 470, Springer-Verlag, Berlin, 1975.

[7] R. C. Bradley, Introduction to Strong Mixing Conditions, Kendrick Press, Heber City, 2007.
[8] T. EisnerB. FarkasM. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015.
[9]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math., 31 (1977), 204-256. doi: 10.1007/BF02813304.

[10] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton NJ, 1981.
[11]

H. Furstenberg, Nonconventional ergodic averages, in The Legacy of John Von Neumann, Proc. Symp. Pure Math. 50 (1990), 43-56, Amer. Math. Soc., Providence, RI.

[12]

H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. d'Analyse Math., 34 (1978), 275-291. doi: 10.1007/BF02790016.

[13]

H. FurstenbergY. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc., 7 (1982), 527-552. doi: 10.1090/S0273-0979-1982-15052-2.

[14]

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., 167 (2008), 481-547. doi: 10.4007/annals.2008.167.481.

[15] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Co., New York, 1965.
[16] P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, AMS Chelsea Publishing, Providence, RI, 1998.
[17]

L. Heinrich, Mixing properties and central limit theorem for a class of non-identical piecewise monotonic $C^2$-transformations, Mathematische Nachricht, 181 (1996), 185-2014.

[18]

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. Math., 161 (2005), 397-488. doi: 10.4007/annals.2005.161.397.

[19]

J. Konieczny, Weakly mixing sets of integers and polynomial equations, Quarterly J. Math, 68 (2017), 141-159.

[20]

A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math., 146 (2005), 303-315. doi: 10.1007/BF02773538.

[21] W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.
[22] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York-Berlin, 1982.

show all references

References:
[1]

T. Austin, Non-conventional ergodic averages for several commuting actions of an amenable group, J. D'Analyse Math., 130 (2016), 243-274. doi: 10.1007/s11854-016-0036-6.

[2]

V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.

[3]

V. BergelsonB. HostR. McCutcheon and F. Parreau, Aspects of uniformity in recurrence, Colloq. Math., 84/85 (2000), 549-576.

[4]

V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753. doi: 10.1090/S0894-0347-96-00194-4.

[5]

V. BergelsonA. Leibman and E. Lesigne, Intersective polynomials and polynomial Szemerédi theorem, Adv. Math., 219 (2008), 369-388. doi: 10.1016/j.aim.2008.05.008.

[6]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., 470, Springer-Verlag, Berlin, 1975.

[7] R. C. Bradley, Introduction to Strong Mixing Conditions, Kendrick Press, Heber City, 2007.
[8] T. EisnerB. FarkasM. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015.
[9]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math., 31 (1977), 204-256. doi: 10.1007/BF02813304.

[10] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton NJ, 1981.
[11]

H. Furstenberg, Nonconventional ergodic averages, in The Legacy of John Von Neumann, Proc. Symp. Pure Math. 50 (1990), 43-56, Amer. Math. Soc., Providence, RI.

[12]

H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. d'Analyse Math., 34 (1978), 275-291. doi: 10.1007/BF02790016.

[13]

H. FurstenbergY. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc., 7 (1982), 527-552. doi: 10.1090/S0273-0979-1982-15052-2.

[14]

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., 167 (2008), 481-547. doi: 10.4007/annals.2008.167.481.

[15] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Co., New York, 1965.
[16] P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, AMS Chelsea Publishing, Providence, RI, 1998.
[17]

L. Heinrich, Mixing properties and central limit theorem for a class of non-identical piecewise monotonic $C^2$-transformations, Mathematische Nachricht, 181 (1996), 185-2014.

[18]

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. Math., 161 (2005), 397-488. doi: 10.4007/annals.2005.161.397.

[19]

J. Konieczny, Weakly mixing sets of integers and polynomial equations, Quarterly J. Math, 68 (2017), 141-159.

[20]

A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math., 146 (2005), 303-315. doi: 10.1007/BF02773538.

[21] W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.
[22] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York-Berlin, 1982.
[1]

Drew Fudenberg, David K. Levine. Tail probabilities for triangular arrays. Journal of Dynamics & Games, 2014, 1 (1) : 45-56. doi: 10.3934/jdg.2014.1.45

[2]

L'ubomír Snoha, Vladimír Špitalský. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 821-835. doi: 10.3934/dcds.2006.14.821

[3]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

[4]

Christian Pötzsche. Dichotomy spectra of triangular equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 423-450. doi: 10.3934/dcds.2016.36.423

[5]

Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291

[6]

Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241

[7]

María Isabel Cortez. $Z^d$ Toeplitz arrays. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 859-881. doi: 10.3934/dcds.2006.15.859

[8]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[9]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[10]

Bin Cheng, Alex Mahalov. Time-averages of fast oscillatory systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1151-1162. doi: 10.3934/dcdss.2013.6.1151

[11]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[12]

Petr Kůrka, Vincent Penné, Sandro Vaienti. Dynamically defined recurrence dimension. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 137-146. doi: 10.3934/dcds.2002.8.137

[13]

Serge Troubetzkoy. Recurrence in generic staircases. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1047-1053. doi: 10.3934/dcds.2012.32.1047

[14]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[15]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[16]

Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

[17]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[18]

Rod Cross, Victor Kozyakin. Double exponential instability of triangular arbitrage systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 349-376. doi: 10.3934/dcdsb.2013.18.349

[19]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[20]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (111)
  • HTML views (131)
  • Cited by (0)

Other articles
by authors

[Back to Top]