June  2018, 38(6): 2717-2729. doi: 10.3934/dcds.2018114

Partially hyperbolic sets with a dynamically minimal lamination

Departamento de Matemática - Instituto Tecnológico de Aeronáutica (ITA) - Praça Marechal Eduardo Gomes, 50 - Vila das Acacias, São José dos Campos, CEP 12228-900, SP, Brazil

Received  March 2017 Revised  December 2017 Published  April 2018

We study partially hyperbolic sets of $C^1$-diffeomorphisms. For these sets there are defined the strong stable and strong unstable laminations.A lamination is called dynamically minimal when the orbit of each leaf intersects the set densely.

We prove that partially hyperbolic sets having a dynamically minimal lamination have empty interior. We also study the Lebesgue measure and the spectral decomposition of these sets. These results can be applied to $C^1$-generic/robustly transitive attractors with one-dimensional center bundle.

Citation: Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114
References:
[1]

F. Abdenur, Attractors of generic diffeomorphisms are persistent, Nonlinearity, 16 (2003), 301-311.  doi: 10.1088/0951-7715/16/1/318.  Google Scholar

[2]

F. AbdenurC. Bonatti and L. Díaz, Non-wandering sets with non-empty interior, Nonlinearity, 17 (2004), 175-191.  doi: 10.1088/0951-7715/17/1/011.  Google Scholar

[3]

F. Abdenur and S. Crovisier, Transitivity and topological mixing for C1 diffeomorphisms, Essays in Mathematics and Its Applications, Springer, Heidelberg, (2012), 1-16.  Google Scholar

[4]

J. Alves and V. Pinheiro, Topological structure of partially hyperbolic sets with positive volume, Trans. Amer. Math. Soc., 360 (2008), 5551-5569.  doi: 10.1090/S0002-9947-08-04484-X.  Google Scholar

[5]

C. Bonatti and S. Crovisier, Recurrence et genéricité, Invent. Math., 1 (2002), 513-541.   Google Scholar

[6]

C. BonattiL. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.   Google Scholar

[7] C. BonattiL. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, Berlin, 2005.   Google Scholar
[8]

C. BonattiS. Gan and L. Wen, On the existence of non-trivial homoclinic classes, Ergod. Th. & Dynam. Sys., 27 (2007), 1473-1508.   Google Scholar

[9]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.  doi: 10.1007/BF02810585.  Google Scholar

[10]

R. Bowen, A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.  doi: 10.1007/BF01389849.  Google Scholar

[11] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, Berlin-New York, 1975.   Google Scholar
[12]

M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Prilozen, 9 (1975), 9-19.   Google Scholar

[13]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, R. I., 1978.  Google Scholar

[14]

T. Fisher, Hyperbolic sets with non-empty interior, Discrete Contin. Dyn. Syst., 15 (2006), 433-446.  doi: 10.3934/dcds.2006.15.433.  Google Scholar

[15]

F. Hertz, M. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, 103-109, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007.  Google Scholar

[16]

R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540.  doi: 10.2307/2007021.  Google Scholar

[17]

F. Nobili, Minimality of one invariant foliation for partially hyperbolic attractors, Nonlinearity, 28 (2015), 1897-1918.  doi: 10.1088/0951-7715/28/6/1897.  Google Scholar

[18]

R. Potrie, Generic bi-Lyapunov stable homoclinic classes, Nonlinearity, 23 (2010), 1631-1649.  doi: 10.1088/0951-7715/23/7/006.  Google Scholar

[19]

S. Smale, Diffeomorphisms with many periodic points, Bull. Am. Math. Soc., 73 (1967), 747-817.   Google Scholar

show all references

References:
[1]

F. Abdenur, Attractors of generic diffeomorphisms are persistent, Nonlinearity, 16 (2003), 301-311.  doi: 10.1088/0951-7715/16/1/318.  Google Scholar

[2]

F. AbdenurC. Bonatti and L. Díaz, Non-wandering sets with non-empty interior, Nonlinearity, 17 (2004), 175-191.  doi: 10.1088/0951-7715/17/1/011.  Google Scholar

[3]

F. Abdenur and S. Crovisier, Transitivity and topological mixing for C1 diffeomorphisms, Essays in Mathematics and Its Applications, Springer, Heidelberg, (2012), 1-16.  Google Scholar

[4]

J. Alves and V. Pinheiro, Topological structure of partially hyperbolic sets with positive volume, Trans. Amer. Math. Soc., 360 (2008), 5551-5569.  doi: 10.1090/S0002-9947-08-04484-X.  Google Scholar

[5]

C. Bonatti and S. Crovisier, Recurrence et genéricité, Invent. Math., 1 (2002), 513-541.   Google Scholar

[6]

C. BonattiL. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.   Google Scholar

[7] C. BonattiL. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, Berlin, 2005.   Google Scholar
[8]

C. BonattiS. Gan and L. Wen, On the existence of non-trivial homoclinic classes, Ergod. Th. & Dynam. Sys., 27 (2007), 1473-1508.   Google Scholar

[9]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.  doi: 10.1007/BF02810585.  Google Scholar

[10]

R. Bowen, A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.  doi: 10.1007/BF01389849.  Google Scholar

[11] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, Berlin-New York, 1975.   Google Scholar
[12]

M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Prilozen, 9 (1975), 9-19.   Google Scholar

[13]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, R. I., 1978.  Google Scholar

[14]

T. Fisher, Hyperbolic sets with non-empty interior, Discrete Contin. Dyn. Syst., 15 (2006), 433-446.  doi: 10.3934/dcds.2006.15.433.  Google Scholar

[15]

F. Hertz, M. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, 103-109, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007.  Google Scholar

[16]

R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540.  doi: 10.2307/2007021.  Google Scholar

[17]

F. Nobili, Minimality of one invariant foliation for partially hyperbolic attractors, Nonlinearity, 28 (2015), 1897-1918.  doi: 10.1088/0951-7715/28/6/1897.  Google Scholar

[18]

R. Potrie, Generic bi-Lyapunov stable homoclinic classes, Nonlinearity, 23 (2010), 1631-1649.  doi: 10.1088/0951-7715/23/7/006.  Google Scholar

[19]

S. Smale, Diffeomorphisms with many periodic points, Bull. Am. Math. Soc., 73 (1967), 747-817.   Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[12]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[13]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[16]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (110)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]