Starting from the stochastic Cucker-Smale model introduced in [
Citation: |
[1] | M. Agueh, R. Illner and A. Richardson, Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type, Kinet. Relat. Models, 4 (2011), 1-16. doi: 10.3934/krm.2011.4.1. |
[2] | S. Ahn, Y. Ha and A. Richardson, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2011), 103301, 17 pp. |
[3] | D. Aldous, Exchangeability and related topics, Lectures Notes in Math., 1117 (1983), 1-198. |
[4] | D. Bakry, P. Cattiaux and A. Guillin, Rate of convergence for ergodic Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759. doi: 10.1016/j.jfa.2007.11.002. |
[5] | P. Billingsley, Convergence of Probability Measures, Wiley, 1968. |
[6] | F. Bolley, J. Cañizo and J. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210. doi: 10.1142/S0218202511005702. |
[7] | P. Cattiaux, D. Chafaï and A. Guillin, Central limit theorems for additive functionals of ergodic Markov diffusions processes, ALEA Lat. Am. J. Probab. Math. Stat., 9 (2012), 337-382. |
[8] | P. Cattiaux, F. Delebecque and L. Pédèches, Stochastic Cucker-Smale models: Old and new, Preprint. |
[9] | F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243. doi: 10.1109/TAC.2010.2042355. |
[10] | F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296. doi: 10.1016/j.matpur.2007.12.002. |
[11] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-861. doi: 10.1109/TAC.2007.895842. |
[12] | F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x. |
[13] | D. Down, S. Meyn and R. Tweedie, Exponential and uniform ergodicity of Markov processes, Ann. Probab., 23 (1995), 1671-1691. doi: 10.1214/aop/1176987798. |
[14] | S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469. doi: 10.4310/CMS.2009.v7.n2.a9. |
[15] | S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2. |
[16] | S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415. |
[17] | K. Itô and M. Nisio, On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75. doi: 10.1215/kjm/1250524705. |
[18] | S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Lectures Notes in Math., 1627 (1995), 42-95. |
[19] | S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993. |
[20] | L. Pédèches, Exponential ergodicity for a class of non-Markovian stochastic processes, Preprint. |
[21] | M. Scheutzow, Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12 (1984), 41-80. doi: 10.1080/17442508408833294. |
[22] | J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719. |
[23] | A. Sznitman, Topics in propagation of chaos, Lectures Notes in Math., 1464 (1991), 165-251. |
[24] | T. Ton, N. Linh and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73. doi: 10.1142/S0219530513500255. |