In this paper, we are concerned with the fractional order equations (1) with Hartree type $ \dot{H}^{\frac{α}{2}} $-critical nonlinearity and its equivalent integral equations (3). We first prove a regularity result which indicates that weak solutions are smooth (Theorem 1.2). Then, by applying the method of moving planes in integral forms, we prove that positive solutions $ u $ to (1) and (3) are radially symmetric about some point $ x_{0}∈\mathbb{R}^{d} $ and derive the explicit forms for $ u $ (Theorem 1.3 and Corollary 1). As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities (Corollary 2).
Citation: |
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121 Cambridge University Press, Cambridge, 1996.
![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
L. Caffarelli
and L. Vasseur
, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
L. Caffarelli
, B. Gidas
and J. Spruck
, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989)
, 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
|
D. Cao
and W. Dai
, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Royal Soc. Edinburgh-A: Math., 97 (2018)
, 255-273.
doi: 10.1080/00036811.2016.1260708.![]() ![]() ![]() |
|
S. A. Chang
and P. C. Yang
, On uniqueness of solutions of $ n $-th order differential equations in conformal geometry, Math. Res. Lett., 4 (1997)
, 91-102.
doi: 10.4310/MRL.1997.v4.n1.a9.![]() ![]() ![]() |
|
W. Chen
, Y. Fang
and R. Yang
, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015)
, 167-198.
doi: 10.1016/j.aim.2014.12.013.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991)
, 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
|
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. and Dyn. Sys., Vol. 4, 2010.
![]() ![]() |
|
W. Chen
, C. Li
and Y. Li
, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017)
, 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006)
, 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for a system of integral equations, Comm. Patial Differential Equations, 30 (2005)
, 59-65.
doi: 10.1081/PDE-200044445.![]() ![]() ![]() |
|
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, 1-43, Lecture Notes in Math., 1871, Springer, Berlin, 2006.
![]() ![]() |
|
W. Dai
and Z. Liu
, Classification of positive solutions to a system of Hardy-Sobolev type equations, Acta Mathematica Scientia, 37 (2017)
, 1415-1436.
doi: 10.1016/S0252-9602(17)30082-6.![]() ![]() ![]() |
|
W. Dai
, Z. Liu
and G. Lu
, Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Analysis, 46 (2017)
, 569-588.
doi: 10.1007/s11118-016-9594-6.![]() ![]() ![]() |
|
W. Dai
, Z. Liu
and G. Lu
, Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space, Comm. Pure Appl. Anal., 16 (2017)
, 1253-1264.
doi: 10.3934/cpaa.2017061.![]() ![]() ![]() |
|
Y. Fang
and W. Chen
, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012)
, 2835-2867.
doi: 10.1016/j.aim.2012.01.018.![]() ![]() ![]() |
|
J. Frohlich and E. Lenzmann, Mean-field limit of quantum bose gases and nonlinear Hartree equation, in: Sminaire E. D. P. (2003-2004), Expos nXVIII, (2004), 26pp.
![]() ![]() |
|
B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ \mathbb{R}^{n} $, Mathematical Analysis and Applications, Part A, 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.
![]() ![]() |
|
B. Gidas
, W. Ni
and L. Nirenberg
, Symmetry and related properties via maximum principle, Comm. Math. Phys., 68 (1979)
, 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
|
Y. Lei
, Qualitative analysis for the static Hartree-type equations, SIAM J. Math. Anal., 45 (2013)
, 388-406.
doi: 10.1137/120879282.![]() ![]() ![]() |
|
Y. Lei
, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013)
, 883-905.
doi: 10.1007/s00209-012-1036-6.![]() ![]() ![]() |
|
C. Li
, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996)
, 221-231.
doi: 10.1007/s002220050023.![]() ![]() ![]() |
|
D. Li
, C. Miao
and X. Zhang
, The focusing energy-critical Hartree equation, J. Diff. Equations, 246 (2009)
, 1139-1163.
doi: 10.1016/j.jde.2008.05.013.![]() ![]() ![]() |
|
Y. Li
and M. Zhu
, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995)
, 383-417.
doi: 10.1215/S0012-7094-95-08016-8.![]() ![]() ![]() |
|
E. Lieb
and B. Simon
, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977)
, 185-194.
doi: 10.1007/BF01609845.![]() ![]() ![]() |
|
E. Lieb
, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983)
, 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
|
C. S. Lin
, A classification of solutions of a conformally invariant fourth order equation in $ \mathbb{R}^{n} $, Comment. Math. Helv., 73 (1998)
, 206-231.
doi: 10.1007/s000140050052.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case, parts1 and 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984)
, 109-145 and 223--283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The limit case, parts1 and 2, Revista Math. Iberoamericana, 1 (1985)
, 145-201 and 45--121.
![]() ![]() |
|
Z. Liu
and W. Dai
, A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space, Advanced Nonlinear Studies, 15 (2015)
, 117-134.
doi: 10.1515/ans-2015-0106.![]() ![]() ![]() |
|
S. Liu
, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009)
, 1796-1806.
doi: 10.1016/j.na.2009.01.014.![]() ![]() ![]() |
|
C. Ma
, W. Chen
and C. Li
, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011)
, 2676-2699.
doi: 10.1016/j.aim.2010.07.020.![]() ![]() ![]() |
|
L. Ma
and L. Zhao
, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010)
, 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
|
C. Miao
, G. Xu
and L. Zhao
, Global wellposedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Diff. Equations, 246 (2009)
, 3715-3749.
doi: 10.1016/j.jde.2008.11.011.![]() ![]() ![]() |
|
C. Miao
, G. Xu
and L. Zhao
, Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case, Colloq. Math., 114 (2009)
, 213-236.
doi: 10.4064/cm114-2-5.![]() ![]() ![]() |
|
V. Moroz
and J. Van Schaftingen
, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013)
, 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
|
B. Ou
, A Remark on a singular integral equation, Houston J. Math., 25 (1999)
, 181-184.
![]() ![]() |
|
J. Serrin
, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971)
, 304-318.
![]() ![]() |
|
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, New Jersey, 1970.
![]() ![]() |
|
J. Wei
and X. Xu
, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999)
, 207-228.
doi: 10.1007/s002080050258.![]() ![]() ![]() |
|
D. Xu
and Y. Lei
, Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015)
, 85-89.
doi: 10.1016/j.aml.2014.12.007.![]() ![]() ![]() |