June  2018, 38(6): 2827-2849. doi: 10.3934/dcds.2018120

Introduction to tropical series and wave dynamic on them

1. 

National Research University Higher School of Economics, Soyuza Pechatnikov str., 16, St. Petersburg, Russian Federation

2. 

IST Austria. Klosterneuburg 3400, Am campus 1, Austria

Received  June 2017 Revised  January 2018 Published  April 2018

The theory of tropical series, that we develop here, firstly appeared in the study of the growth of pluriharmonic functions. Motivated by waves in sandpile models we introduce a dynamic on the set of tropical series, and it is experimentally observed that this dynamic obeys a power law. So, this paper serves as a compilation of results we need for other articles and also introduces several objects interesting by themselves.

Citation: Nikita Kalinin, Mikhail Shkolnikov. Introduction to tropical series and wave dynamic on them. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2827-2849. doi: 10.3934/dcds.2018120
References:
[1]

E. Abakumov and E. Doubtsov, Approximation by proper holomorphic maps and tropical power series, Constructive Approximation, 47 (2018), 321-338. doi: 10.1007/s00365-017-9375-5. Google Scholar

[2]

O. Bergman and B. Kol, String webs and $1/4$ BPS monopoles, Nuclear Phys. B, 536 (1999), 149-174. Google Scholar

[3]

E. Brugallé, Some aspects of tropical geometry, Eur. Math. Soc. Newsl., 83 (2012), 23-28. Google Scholar

[4]

E. Brugallé, I. Itenberg, G. Mikhalkin and K. Shaw, Brief introduction to tropical geometry, in Proceedings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, 1-75. Google Scholar

[5]

S. Caracciolo, G. Paoletti and A. Sportiello, Conservation laws for strings in the abelian sandpile model, EPL (Europhysics Letters), 90 (2010), 60003.Google Scholar

[6]

R. G. Halburd and N. J. Southall, Tropical Nevanlinna theory and ultradiscrete equations, Int. Math. Res. Not. IMRN, 5 (2009), 887-911. Google Scholar

[7]

N. Kalinin and M. Shkolnikov, Tropical curves in sandpiles, Comptes Rendus Mathematique, 354 (2016), 125-130. doi: 10.1016/j.crma.2015.11.003. Google Scholar

[8]

N. Kalinin, A. Guzmán Sáenz, Y. Prieto, M. Shkolnikov, V. Kalinina and E. Lupercio, Self-organized criticality, pattern emergence, and tropical geometry, Submitted.Google Scholar

[9]

N. Kalinin and M. Shkolnikov, The number $\pi$ and summation by ${S}{L}(2, \mathbb{Z})$, Arnold Mathematical Journal, 3 (2017), 511-517, arXiv: 1701.07584. doi: 10.1007/s40598-017-0075-9. Google Scholar

[10]

N. Kalinin and M. Shkolnikov, Sandpile solitons via smoothing of superharmonic functions, Submitted, arXiv: 1711.04285.Google Scholar

[11]

N. Kalinin and M. Shkolnikov, Tropical formulae for summation over a part of $SL(2, \mathbb{Z})$, European Journal of Mathematics, arXiv: 1711.02089.Google Scholar

[12]

N. Kalinin and M. Shkolnikov, Tropical curves in sandpile models, arXiv: 1502.06284.Google Scholar

[13]

C. O. Kiselman, Croissance des fonctions plurisousharmoniques en dimension infinie, Ann. Inst. Fourier (Grenoble), 34 (1984), 155-183. doi: 10.5802/aif.955. Google Scholar

[14]

C. O. Kiselman, Questions inspired by Mikael Passare's mathematics, Afrika Matematika, 25 (2014), 271-288. doi: 10.1007/s13370-012-0107-5. Google Scholar

[15]

B. Kol and J. Rahmfeld, Bps spectrum of 5 dimensional field theories, (p, q) webs and curve counting, Journal of High Energy Physics, 8 (1998), Paper 6, 15 pp. Google Scholar

[16]

R. Korhonen, I. Laine and K. Tohge, Tropical Value Distribution Theory and Ultra-Discrete Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Google Scholar

[17]

S. LahayeJ. Komenda and J.-L. Boimond, Compositions of (max, +) automata, Discrete Event Dynamic Systems, 25 (2015), 323-344. doi: 10.1007/s10626-014-0186-6. Google Scholar

[18]

I. Laine and K. Tohge, Tropical Nevanlinna theory and second main theorem, Proc. Lond. Math. Soc. (3), 102 (2011), 883-922. doi: 10.1112/plms/pdq049. Google Scholar

[19]

S. Lombardy and J. Sakarovitch, Sequential?, Theoretical Computer Science, 356 (2006), 224-244. doi: 10.1016/j.tcs.2006.01.028. Google Scholar

[20]

G. Mikhalkin, Enumerative tropical algebraic geometry in $\mathbb R^2$, J. Amer. Math. Soc., 18 (2005), 313-377. doi: 10.1090/S0894-0347-05-00477-7. Google Scholar

[21]

G. Mikhalkin, Tropical geometry and its applications, in International Congress of Mathematicians, Eur. Math. Soc., Zürich, 2 (2006), 827-852. Google Scholar

[22]

G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions, in Curves and Abelian Varieties, vol. 465 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2008,203-230. Google Scholar

[23]

M. Shkolnikov, Tropical Curves, Convex Domains, Sandpiles and Amoebas, PhD thesis, University of Geneva, 2017.Google Scholar

[24]

K. Tohge, The order and type formulas for tropical entire functions--another flexibility of complex analysis, On Complex Analysis and its Applications to Differential and Functional Equations, 113-164.Google Scholar

[25]

T. Y. Yu, The number of vertices of a tropical curve is bounded by its area, Enseign. Math., 60 (2014), 257-271. doi: 10.4171/LEM/60-3/4-3. Google Scholar

show all references

References:
[1]

E. Abakumov and E. Doubtsov, Approximation by proper holomorphic maps and tropical power series, Constructive Approximation, 47 (2018), 321-338. doi: 10.1007/s00365-017-9375-5. Google Scholar

[2]

O. Bergman and B. Kol, String webs and $1/4$ BPS monopoles, Nuclear Phys. B, 536 (1999), 149-174. Google Scholar

[3]

E. Brugallé, Some aspects of tropical geometry, Eur. Math. Soc. Newsl., 83 (2012), 23-28. Google Scholar

[4]

E. Brugallé, I. Itenberg, G. Mikhalkin and K. Shaw, Brief introduction to tropical geometry, in Proceedings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, 1-75. Google Scholar

[5]

S. Caracciolo, G. Paoletti and A. Sportiello, Conservation laws for strings in the abelian sandpile model, EPL (Europhysics Letters), 90 (2010), 60003.Google Scholar

[6]

R. G. Halburd and N. J. Southall, Tropical Nevanlinna theory and ultradiscrete equations, Int. Math. Res. Not. IMRN, 5 (2009), 887-911. Google Scholar

[7]

N. Kalinin and M. Shkolnikov, Tropical curves in sandpiles, Comptes Rendus Mathematique, 354 (2016), 125-130. doi: 10.1016/j.crma.2015.11.003. Google Scholar

[8]

N. Kalinin, A. Guzmán Sáenz, Y. Prieto, M. Shkolnikov, V. Kalinina and E. Lupercio, Self-organized criticality, pattern emergence, and tropical geometry, Submitted.Google Scholar

[9]

N. Kalinin and M. Shkolnikov, The number $\pi$ and summation by ${S}{L}(2, \mathbb{Z})$, Arnold Mathematical Journal, 3 (2017), 511-517, arXiv: 1701.07584. doi: 10.1007/s40598-017-0075-9. Google Scholar

[10]

N. Kalinin and M. Shkolnikov, Sandpile solitons via smoothing of superharmonic functions, Submitted, arXiv: 1711.04285.Google Scholar

[11]

N. Kalinin and M. Shkolnikov, Tropical formulae for summation over a part of $SL(2, \mathbb{Z})$, European Journal of Mathematics, arXiv: 1711.02089.Google Scholar

[12]

N. Kalinin and M. Shkolnikov, Tropical curves in sandpile models, arXiv: 1502.06284.Google Scholar

[13]

C. O. Kiselman, Croissance des fonctions plurisousharmoniques en dimension infinie, Ann. Inst. Fourier (Grenoble), 34 (1984), 155-183. doi: 10.5802/aif.955. Google Scholar

[14]

C. O. Kiselman, Questions inspired by Mikael Passare's mathematics, Afrika Matematika, 25 (2014), 271-288. doi: 10.1007/s13370-012-0107-5. Google Scholar

[15]

B. Kol and J. Rahmfeld, Bps spectrum of 5 dimensional field theories, (p, q) webs and curve counting, Journal of High Energy Physics, 8 (1998), Paper 6, 15 pp. Google Scholar

[16]

R. Korhonen, I. Laine and K. Tohge, Tropical Value Distribution Theory and Ultra-Discrete Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Google Scholar

[17]

S. LahayeJ. Komenda and J.-L. Boimond, Compositions of (max, +) automata, Discrete Event Dynamic Systems, 25 (2015), 323-344. doi: 10.1007/s10626-014-0186-6. Google Scholar

[18]

I. Laine and K. Tohge, Tropical Nevanlinna theory and second main theorem, Proc. Lond. Math. Soc. (3), 102 (2011), 883-922. doi: 10.1112/plms/pdq049. Google Scholar

[19]

S. Lombardy and J. Sakarovitch, Sequential?, Theoretical Computer Science, 356 (2006), 224-244. doi: 10.1016/j.tcs.2006.01.028. Google Scholar

[20]

G. Mikhalkin, Enumerative tropical algebraic geometry in $\mathbb R^2$, J. Amer. Math. Soc., 18 (2005), 313-377. doi: 10.1090/S0894-0347-05-00477-7. Google Scholar

[21]

G. Mikhalkin, Tropical geometry and its applications, in International Congress of Mathematicians, Eur. Math. Soc., Zürich, 2 (2006), 827-852. Google Scholar

[22]

G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions, in Curves and Abelian Varieties, vol. 465 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2008,203-230. Google Scholar

[23]

M. Shkolnikov, Tropical Curves, Convex Domains, Sandpiles and Amoebas, PhD thesis, University of Geneva, 2017.Google Scholar

[24]

K. Tohge, The order and type formulas for tropical entire functions--another flexibility of complex analysis, On Complex Analysis and its Applications to Differential and Functional Equations, 113-164.Google Scholar

[25]

T. Y. Yu, The number of vertices of a tropical curve is bounded by its area, Enseign. Math., 60 (2014), 257-271. doi: 10.4171/LEM/60-3/4-3. Google Scholar

Figure 1.  The central picture shows the corner locus of the right picture which is $l_{\Omega}$ (Definition 4.1) for $\Omega = \{x^2+y^2\leq 1\}$.
Figure 2.  First row shows how curves given by $G_p 0_\Omega$ depend on the position of the point in the pentagon $\Omega$. The second row shows monomials in their minimal canonical form. Note that the coordinate axes of the second row are actually reversed. Each lattice point on a below picture represents a face where the corresponding monomial is dominating on a top picture, see the bottom-right picture.
Figure 3.  On the left: $\Omega$-tropical series $\min(x,y,1-x,1-y,1/3)$ and the corresponding tropical curve. On the right: the result of applying $G_{(\frac{1}{5},\frac{1}{2})}$ to the left picture. The new $\Omega$-tropical series is $\min(2x,x + \frac{2}{15},y,1-x,1-y,\frac{1}{3})$ and the corresponding tropical curve is presented on the right. The fat point is $(\frac{1}{5},\frac{1}{2})$. Note that there appears a new face where $2x$ is the dominating monomial.
Figure 4.  Illustration for Remark 2. The operator $G_{\bf{p}}$ shrinks the face $\Phi$ where ${\bf{p}}$ belongs to. Firstly, $t = 0$, then $t = 0.5$, and finally $t = 1$ in ${\text{Add}}_{ij}^{ct}f$. Note that combinatorics of the curve can change when $t$ goes from $0$ to $1$.
Figure 5.  Examples of balancing condition in local pictures of tropical curves near vertices. The notation ${\bf{m}}\times (p,q)$ means that the corresponding edge has the weight $m$ and the primitive vector $(p,q).$ From left to right: a smooth vertex, a nodal vertex, then two neither smooth nor nodal vertices.
Figure 6.  Left: the curve corresponding to the function $g$ from Theorem 9.5, near a corner, $d(S_k) = 4$. Each vertex $V$ of the curve is smooth because $g$ is locally presented as $\min(y,kx,(k+1)x)$ near $V$. Right: an example of $C(g)$ for $g$ in Lemma 12.3. Colored corners symbolize that a quasidegree was not nice, and we made blow-ups at these corners.
Figure 7.  Above pictures show non-unimodular corners $\Lambda$ (dashed lines). The corresponding below pictures present lattice points with respect to whom we should perform the blow-ups in Lemma 12.3, in order to make all the corners unimodular: the result is shown by continuous lines above. Dashed lines below show vectors dual to the new sides.
Figure 8.  In the picture we shrink a triangular cycle. Any deformation of a tropical curve can be decomposed into such operations or their inversions.
Figure 9.  Computing contributions for symplectic area.
[1]

Chanh Kieu, Quan Wang. On the scale dynamics of the tropical cyclone intensity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3047-3070. doi: 10.3934/dcdsb.2017196

[2]

Tian Ma, Shouhong Wang. Tropical atmospheric circulations: Dynamic stability and transitions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1399-1417. doi: 10.3934/dcds.2010.26.1399

[3]

Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007

[4]

Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial & Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103

[5]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[6]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[7]

Botao ZHOU, Ying XU. How the “Best” CMIP5 Models Project Relations of Asian–Pacific Oscillation to Circulation Backgrounds Favorable for Tropical Cyclone Genesis over the Western North Pacific. Inverse Problems & Imaging, 2017, 11 (2) : 107-116. doi: 10.1007/s13351-017-6088-4

[8]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[9]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[10]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[11]

Jon Johnsen. Characterization of Log-convex decay in non-selfadjoint dynamics. Electronic Research Announcements, 2018, 25: 72-86. doi: 10.3934/era.2018.25.008

[12]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[13]

C. M. Elliott, B. Gawron, S. Maier-Paape, E. S. Van Vleck. Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration. Communications on Pure & Applied Analysis, 2006, 5 (1) : 181-200. doi: 10.3934/cpaa.2006.5.181

[14]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[15]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[16]

Fiammetta Battaglia and Elisa Prato. Nonrational, nonsimple convex polytopes in symplectic geometry. Electronic Research Announcements, 2002, 8: 29-34.

[17]

Q-Heung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation. Communications on Pure & Applied Analysis, 2003, 2 (2) : 159-170. doi: 10.3934/cpaa.2003.2.159

[18]

Kari Eloranta. Archimedean ice. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4291-4303. doi: 10.3934/dcds.2013.33.4291

[19]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[20]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (46)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]