• Previous Article
    Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system
  • DCDS Home
  • This Issue
  • Next Article
    Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies
June  2018, 38(6): 2879-2910. doi: 10.3934/dcds.2018124

Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces

1. 

College of Science & Three Gorges Mathematical Research Center, China Three Gorges University, Yichang 443002, China

2. 

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

3. 

School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

* Corresponding author: qybie@126.com

Received  July 2017 Published  April 2018

Fund Project: Research Supported by the NNSF of China (Grant Nos.11271379, 11271381, 11671406, 11601164 and 11701325), the National Basic Research Program of China (973 Program) (Grant No. 2010CB808002), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2016J05010 and 2017J05007) and the Scientific Research Funds of Huaqiao University (Grant No.15BS201).

The present paper is devoted to the compressible nematic liquid crystal flow in the whole space $ \mathbb{R}^N\,(N≥ 2)$. Here we concentrate on the incompressible limit in the $ L^p$ type critical Besov spaces setting. We first establish the existence of global solutions in the framework of $ L^p$ type critical spaces provided that the initial data are close to some equilibrium states. Based on the global existence, we then consider the incompressible limit problem in the ill prepared data case. We justify the low Mach number convergence to the incompressible flow of liquid crystals in proper function spaces. In addition, the accurate converge rates are obtained.

Citation: Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011.  Google Scholar

[2]

Q. BieH. CuiQ. Wang and Z. Yao, Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals, Z. Angew. Math. Phys., 68 (2017), 113.   Google Scholar

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246.  doi: 10.24033/asens.1404.  Google Scholar

[4]

J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

J. Y. Chemin, I. Gallagher, D. Iftimie, J. Ball and D. Welsh, Perfect Incompressible Fluids, Clarendon Press Oxford, 1998.  Google Scholar

[6]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[7]

R. Danchin, Zero mach number limit for compressible flows with periodic boundary conditions, Am. J. Math., 124 (2002), 1153-1219.  doi: 10.1353/ajm.2002.0036.  Google Scholar

[8]

R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup., 35 (2002), 27-75.  doi: 10.1016/S0012-9593(01)01085-0.  Google Scholar

[9]

R. Danchin, Fourier Analysis Methods for Compressible Flows, Topics on compressible Navier-Stokes equations, états de la recherche SMF, Chambéry 2012.  Google Scholar

[10]

R. Danchin and L. He, The incompressible limit in $ {L}^{p}$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.  Google Scholar

[11]

R. Danchin and L. He, The Oberbeck-Boussinesq approximation in critical spaces, Asymptotic Anal., 84 (2013), 61-102.   Google Scholar

[12]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, P. Roy. Soc. Edinb. A, 455 (1986), 2271-2279.  doi: 10.1098/rspa.1999.0403.  Google Scholar

[13]

B. DesjardinsE. GrenierP. L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equationswith dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[14]

S. DingJ. HuangH. Wen and R. Zi, Incompressible limit of the compressible nematic liquid crystal flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[15]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.   Google Scholar

[16]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.   Google Scholar

[17]

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheology, 5 (1961), 23-34.  doi: 10.1122/1.548883.  Google Scholar

[18]

J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.   Google Scholar

[19]

T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal., 29 (1998), 652-672.  doi: 10.1137/S0036141097315312.  Google Scholar

[20]

Y. Hao and X. Liu, Incompressible limit of a compressible liquid crystals system, Acta Math. Sci. Ser. B, 33 (2013), 781-796.  doi: 10.1016/S0252-9602(13)60038-7.  Google Scholar

[21]

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.  Google Scholar

[22]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[23]

D. Hoff, The zero-mach limit of compressible flows, Comm. Math. Phys., 192 (1998), 543-554.  doi: 10.1007/s002200050308.  Google Scholar

[24]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[25]

T. HuangC. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[26]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[27]

F. JiangS. Jiang and D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[28]

F. JiangS. Jiang and D. Wang, Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions, Arch. Ration. Mech. Anal., 214 (2014), 403-451.  doi: 10.1007/s00205-014-0768-3.  Google Scholar

[29]

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651.  doi: 10.1002/cpa.3160350503.  Google Scholar

[30]

H. O. KreissJ. Lorenz and M. J. Naughton, Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations, Adv. Appl. Math., 12 (1991), 187-214.  doi: 10.1016/0196-8858(91)90012-8.  Google Scholar

[31]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.   Google Scholar

[32]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[33]

F. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[34]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[35]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.  Google Scholar

[36]

J. LinB. Lai and C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[37]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, volume 3, Walter de Gruyter, 1996.  Google Scholar

[38]

D. Wang and C. Yu, Incompressible limit for the compressible flow of liquid crystals, J. Math. Fluid Mech., 16 (2014), 771-786.  doi: 10.1007/s00021-014-0185-2.  Google Scholar

[39]

F. XuS. Hao and J. Yuan, Well-posedness for the density-dependent incompressible flow of liquid crystals, Math. Meth. Appl. Sci., 38 (2015), 2680-2702.  doi: 10.1002/mma.3248.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011.  Google Scholar

[2]

Q. BieH. CuiQ. Wang and Z. Yao, Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals, Z. Angew. Math. Phys., 68 (2017), 113.   Google Scholar

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246.  doi: 10.24033/asens.1404.  Google Scholar

[4]

J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

J. Y. Chemin, I. Gallagher, D. Iftimie, J. Ball and D. Welsh, Perfect Incompressible Fluids, Clarendon Press Oxford, 1998.  Google Scholar

[6]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[7]

R. Danchin, Zero mach number limit for compressible flows with periodic boundary conditions, Am. J. Math., 124 (2002), 1153-1219.  doi: 10.1353/ajm.2002.0036.  Google Scholar

[8]

R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup., 35 (2002), 27-75.  doi: 10.1016/S0012-9593(01)01085-0.  Google Scholar

[9]

R. Danchin, Fourier Analysis Methods for Compressible Flows, Topics on compressible Navier-Stokes equations, états de la recherche SMF, Chambéry 2012.  Google Scholar

[10]

R. Danchin and L. He, The incompressible limit in $ {L}^{p}$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.  Google Scholar

[11]

R. Danchin and L. He, The Oberbeck-Boussinesq approximation in critical spaces, Asymptotic Anal., 84 (2013), 61-102.   Google Scholar

[12]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, P. Roy. Soc. Edinb. A, 455 (1986), 2271-2279.  doi: 10.1098/rspa.1999.0403.  Google Scholar

[13]

B. DesjardinsE. GrenierP. L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equationswith dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[14]

S. DingJ. HuangH. Wen and R. Zi, Incompressible limit of the compressible nematic liquid crystal flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[15]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.   Google Scholar

[16]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.   Google Scholar

[17]

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheology, 5 (1961), 23-34.  doi: 10.1122/1.548883.  Google Scholar

[18]

J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.   Google Scholar

[19]

T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal., 29 (1998), 652-672.  doi: 10.1137/S0036141097315312.  Google Scholar

[20]

Y. Hao and X. Liu, Incompressible limit of a compressible liquid crystals system, Acta Math. Sci. Ser. B, 33 (2013), 781-796.  doi: 10.1016/S0252-9602(13)60038-7.  Google Scholar

[21]

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.  Google Scholar

[22]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[23]

D. Hoff, The zero-mach limit of compressible flows, Comm. Math. Phys., 192 (1998), 543-554.  doi: 10.1007/s002200050308.  Google Scholar

[24]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[25]

T. HuangC. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[26]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[27]

F. JiangS. Jiang and D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[28]

F. JiangS. Jiang and D. Wang, Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions, Arch. Ration. Mech. Anal., 214 (2014), 403-451.  doi: 10.1007/s00205-014-0768-3.  Google Scholar

[29]

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651.  doi: 10.1002/cpa.3160350503.  Google Scholar

[30]

H. O. KreissJ. Lorenz and M. J. Naughton, Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations, Adv. Appl. Math., 12 (1991), 187-214.  doi: 10.1016/0196-8858(91)90012-8.  Google Scholar

[31]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.   Google Scholar

[32]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[33]

F. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[34]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[35]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.  Google Scholar

[36]

J. LinB. Lai and C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[37]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, volume 3, Walter de Gruyter, 1996.  Google Scholar

[38]

D. Wang and C. Yu, Incompressible limit for the compressible flow of liquid crystals, J. Math. Fluid Mech., 16 (2014), 771-786.  doi: 10.1007/s00021-014-0185-2.  Google Scholar

[39]

F. XuS. Hao and J. Yuan, Well-posedness for the density-dependent incompressible flow of liquid crystals, Math. Meth. Appl. Sci., 38 (2015), 2680-2702.  doi: 10.1002/mma.3248.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[17]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (188)
  • HTML views (177)
  • Cited by (2)

Other articles
by authors

[Back to Top]