• Previous Article
    Isolated singularities for elliptic equations with hardy operator and source nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces
June  2018, 38(6): 2911-2943. doi: 10.3934/dcds.2018125

Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system

1. 

Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan 430070, China

2. 

Department of Mathematics, Center for PDE and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

* Corresponding author: Hairong Yuan

Received  July 2017 Revised  December 2017 Published  April 2018

Fund Project: The research of Min Ding is supported by the Fundamental Research Funds for the Central Universities (WUT: 2016IVA074) and by the National Natural Science Foundation of China under Grant Nos. 11626176 and 11701435. The research of Hairong Yuan is supported by the National Natural Science Foundation of China under Grant No. 11371141, and by Science and Technology Commission of Shanghai Municipality (STCSM) under grant No. 13dz2260400.

We study supersonic flow past a convex corner which is surrounded by quiescent gas. When the pressure of the upstream supersonic flow is larger than that of the quiescent gas, there appears a strong rarefaction wave to rarefy the supersonic gas. Meanwhile, a transonic characteristic discontinuity appears to separate the supersonic flow behind the rarefaction wave from the static gas. In this paper, we employ a wave front tracking method to establish structural stability of such a flow pattern under non-smooth perturbations of the upcoming supersonic flow. It is an initial-value/free-boundary problem for the two-dimensional steady non-isentropic compressible Euler system. The main ingredients are careful analysis of wave interactions and construction of suitable Glimm functional, to overcome the difficulty that the strong rarefaction wave has a large total variation.

Citation: Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125
References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.  doi: 10.1007/PL00001406.  Google Scholar

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.  Google Scholar

[3]

G.-Q. G. ChenJ. Kuang and Y. Zhang, Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49 (2017), 818-873.  doi: 10.1137/16M1075089.  Google Scholar

[4]

G. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp. doi: 10.1063/1.4790887.  Google Scholar

[5]

G.-Q. G. ChenV. Kukreja and H. Yuan, Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727.  doi: 10.1007/s00033-013-0312-6.  Google Scholar

[6]

G.-Q. G. ChenY. Zhang and D. Zhu, Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693.  doi: 10.1137/050642976.  Google Scholar

[7]

G.-Q. G. ChenY. Zhang and D. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181 (2006), 261-310.  doi: 10.1007/s00205-005-0412-3.  Google Scholar

[8]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948.  Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016.  Google Scholar

[10]

M. Ding, Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108.  doi: 10.1016/j.jde.2017.02.028.  Google Scholar

[11]

M. Ding, Stability of rarefaction wave to the 1-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Art. 78, 49 pp. doi: 10.1007/s00526-017-1162-4.  Google Scholar

[12]

M. DingJ. Kuang and Y. Zhang, Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264.  doi: 10.1016/j.jmaa.2016.11.059.  Google Scholar

[13]

M. Ding and Y. Li, Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp. doi: 10.1007/s00033-017-0787-7.  Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.  Google Scholar

[15]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015.  Google Scholar

[16]

V. KukrejaH. Yuan and Q. Zhao, Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617.  doi: 10.1016/j.jde.2014.12.017.  Google Scholar

[17]

L. LiuG. Xu and H. Yuan, Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757.  doi: 10.1016/j.aim.2016.01.002.  Google Scholar

[18]

A. Qu and W. Xiang, Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476.  doi: 10.1007/s00205-017-1197-x.  Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.  Google Scholar

[20]

Y.-G. Wang and H. Yuan, Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388.  doi: 10.1007/s00033-014-0404-y.  Google Scholar

[21]

Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850.  doi: 10.1016/j.jde.2009.05.010.  Google Scholar

[22]

Y. Zhang, Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189.  doi: 10.1016/j.nonrwa.2010.06.006.  Google Scholar

show all references

References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.  doi: 10.1007/PL00001406.  Google Scholar

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.  Google Scholar

[3]

G.-Q. G. ChenJ. Kuang and Y. Zhang, Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49 (2017), 818-873.  doi: 10.1137/16M1075089.  Google Scholar

[4]

G. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp. doi: 10.1063/1.4790887.  Google Scholar

[5]

G.-Q. G. ChenV. Kukreja and H. Yuan, Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727.  doi: 10.1007/s00033-013-0312-6.  Google Scholar

[6]

G.-Q. G. ChenY. Zhang and D. Zhu, Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693.  doi: 10.1137/050642976.  Google Scholar

[7]

G.-Q. G. ChenY. Zhang and D. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181 (2006), 261-310.  doi: 10.1007/s00205-005-0412-3.  Google Scholar

[8]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948.  Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016.  Google Scholar

[10]

M. Ding, Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108.  doi: 10.1016/j.jde.2017.02.028.  Google Scholar

[11]

M. Ding, Stability of rarefaction wave to the 1-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Art. 78, 49 pp. doi: 10.1007/s00526-017-1162-4.  Google Scholar

[12]

M. DingJ. Kuang and Y. Zhang, Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264.  doi: 10.1016/j.jmaa.2016.11.059.  Google Scholar

[13]

M. Ding and Y. Li, Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp. doi: 10.1007/s00033-017-0787-7.  Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.  Google Scholar

[15]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015.  Google Scholar

[16]

V. KukrejaH. Yuan and Q. Zhao, Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617.  doi: 10.1016/j.jde.2014.12.017.  Google Scholar

[17]

L. LiuG. Xu and H. Yuan, Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757.  doi: 10.1016/j.aim.2016.01.002.  Google Scholar

[18]

A. Qu and W. Xiang, Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476.  doi: 10.1007/s00205-017-1197-x.  Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.  Google Scholar

[20]

Y.-G. Wang and H. Yuan, Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388.  doi: 10.1007/s00033-014-0404-y.  Google Scholar

[21]

Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850.  doi: 10.1016/j.jde.2009.05.010.  Google Scholar

[22]

Y. Zhang, Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189.  doi: 10.1016/j.nonrwa.2010.06.006.  Google Scholar

Figure 1.  A transonic characteristic discontinuity separating supersonic flow behind the rarefaction wave and the surrounding static gas.
Figure 2.  Reflection on the free-boundary.
[1]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[2]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (82)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]