June  2018, 38(6): 2945-2964. doi: 10.3934/dcds.2018126

Isolated singularities for elliptic equations with hardy operator and source nonlinearity

1. 

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

2. 

Center for PDEs and Department of Mathematics, East China Normal University, Shanghai 200241, China

* Corresponding author: F. Zhou

Received  August 2017 Revised  December 2017 Published  April 2018

Fund Project: H. Chen is supported by NNSF of China, No: 11726614, 11661045, by the Jiangxi Provincial Natural Science Foundation, No: 20161ACB20007, by the Science and Technology Research Project of Jiangxi Provincial Department of Education, No:GJJ160297. F. Zhou is supported by NNSF of China, No: 11726613, 11271133 and 11431005, and STCSM No:13dZ2260400

In this paper, we concern the isolated singular solutions for semi-linear elliptic equations involving Hardy-Leray potential
$- \Delta u + \frac{\mathit{\mu }}{{|x{|^2}}}u = {u^p}\;\;\;{\rm{in }}\;\;\;\Omega \setminus \{ 0\} ,\;\;\;u = 0\;\;\;{\rm{on}}\;\;\;\partial \Omega .\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right)$
We classify the isolated singularities and obtain the existence and stability of positive solutions of (1). Our results are based on the study of nonhomogeneous Hardy problem in a new distributional sense.
Citation: Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126
References:
[1]

O. AdimurthiN. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 130 (2002), 489-505. doi: 10.1090/S0002-9939-01-06132-9.

[2]

P. Aviles, Local behaviour of the solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192. doi: 10.1007/BF01210610.

[3]

L. BoccardoL. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst. A, 16 (2006), 513-523. doi: 10.3934/dcds.2006.16.513.

[4]

H. Brezis and P. Lions, A note on isolated singularities for linear elliptic equations, in Mathematical Analysis and Applications, Acad. Press, 7 (1981), 263-266.

[5]

H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa Cl. Sci., 25 (1997), 217-237.

[6]

H. Brezis and L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.

[7]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.

[8]

D. Cao and Y. Li, Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator, Methods Appl. Anal., 15 (2008), 81-95. doi: 10.4310/MAA.2008.v15.n1.a8.

[9]

N. Chaudhuri and F. Cîrstea, On trichotomy of positive singular solutions associated with the Hardy-Sobolev operator, C. R. Math. Acad. Sci. Paris, 347 (2009), 153-158. doi: 10.1016/j.crma.2008.12.018.

[10]

H. Chen, A. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the Hardy-Leray potentials, arXiv: 1705.08047.

[11]

H. Chen and F. Zhou, Classification of isolated singularities of positive solutions for Choquard equations, J. Diff. Eq., 261 (2016), 6668-6698. doi: 10.1016/j.jde.2016.08.047.

[12]

H. Chen and F. Zhou, Isolated singularities of positive solutions for Choquard equations in sublinear case, Comm. Cont. Math., (2017).

[13]

F. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc., 227 (2014), ⅵ+85 pp.

[14]

J. Davila and L. Dupaigne, Hardy-type inequalities, J. Eur. Math. Soc., 6 (2004), 335-365.

[15]

L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. d'Analyse Mathématique, 86 (2002), 359-398. doi: 10.1007/BF02786656.

[16]

M. Fall and R. Musina, Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials, J. Inequal. Appl., (2011), Art. ID 917201, 21 pp.

[17]

V. Felli and A. Ferrero, On semilinear elliptic equations with borderline Hardy potentials, J. d'Analyse Mathématique, 123 (2014), 303-340. doi: 10.1007/s11854-014-0022-9.

[18]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Func. Anal., 192 (2002), 186-233. doi: 10.1006/jfan.2001.3900.

[19]

A. García and G. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375.

[20]

M. Ghergu and S. Taliaferro, Isolated Singularities in Partial Differential Inequalities, Cambridge University Press, 2016.

[21]

B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406.

[22]

Q. Han and F. Lin, Elliptic Partial Differential Equations, American Mathematical Soc., 2000. doi: 10.1090/cln/001.

[23]

W. Jeong and Y. Lee, Stable solutions and finite Morse index solutions of nonlinear elliptic equations with Hardy potential, Nonl. Anal. T.M.A., 87 (2013), 126-145. doi: 10.1016/j.na.2013.04.007.

[24]

P. Lions, Isolated singularities in semilinear problems, J. Diff. Eq., 38 (1980), 441-450. doi: 10.1016/0022-0396(80)90018-2.

[25]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geometry., 44 (1996), 331-370. doi: 10.4310/jdg/1214458975.

[26]

Y. Naito and T. Sato, Positive solutions for semilinear elliptic equations with singular forcing terms, J. Diff. Eq., 235 (2007), 439-483. doi: 10.1016/j.jde.2007.01.006.

[27]

F. Pacard, Existence and convergence of positive weak solutions of $ -Δ u = u^{\frac{N}{N-2\ }}$ in bounded domains of $ {\mathbb{R}}^N$, Calc. Var. and PDEs., 1 (1993), 243-265. doi: 10.1007/BF01191296.

[28]

Y. Pinchover and K. Tintarev, Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality, Indiana Univ. Math. J., 54 (2005), 1061-1074. doi: 10.1512/iumj.2005.54.2705.

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., 65 American Mathematical Society, 1986.

[30]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag, Berlin, 1996.

[31]

L. Véron, Singularities of Solutions of Second-Order Quasilinear Equations, Pitman Research Notes in Mathematics Series, 353. Longman, Harlow, 1996.

show all references

References:
[1]

O. AdimurthiN. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 130 (2002), 489-505. doi: 10.1090/S0002-9939-01-06132-9.

[2]

P. Aviles, Local behaviour of the solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192. doi: 10.1007/BF01210610.

[3]

L. BoccardoL. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst. A, 16 (2006), 513-523. doi: 10.3934/dcds.2006.16.513.

[4]

H. Brezis and P. Lions, A note on isolated singularities for linear elliptic equations, in Mathematical Analysis and Applications, Acad. Press, 7 (1981), 263-266.

[5]

H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa Cl. Sci., 25 (1997), 217-237.

[6]

H. Brezis and L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.

[7]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.

[8]

D. Cao and Y. Li, Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator, Methods Appl. Anal., 15 (2008), 81-95. doi: 10.4310/MAA.2008.v15.n1.a8.

[9]

N. Chaudhuri and F. Cîrstea, On trichotomy of positive singular solutions associated with the Hardy-Sobolev operator, C. R. Math. Acad. Sci. Paris, 347 (2009), 153-158. doi: 10.1016/j.crma.2008.12.018.

[10]

H. Chen, A. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the Hardy-Leray potentials, arXiv: 1705.08047.

[11]

H. Chen and F. Zhou, Classification of isolated singularities of positive solutions for Choquard equations, J. Diff. Eq., 261 (2016), 6668-6698. doi: 10.1016/j.jde.2016.08.047.

[12]

H. Chen and F. Zhou, Isolated singularities of positive solutions for Choquard equations in sublinear case, Comm. Cont. Math., (2017).

[13]

F. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc., 227 (2014), ⅵ+85 pp.

[14]

J. Davila and L. Dupaigne, Hardy-type inequalities, J. Eur. Math. Soc., 6 (2004), 335-365.

[15]

L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. d'Analyse Mathématique, 86 (2002), 359-398. doi: 10.1007/BF02786656.

[16]

M. Fall and R. Musina, Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials, J. Inequal. Appl., (2011), Art. ID 917201, 21 pp.

[17]

V. Felli and A. Ferrero, On semilinear elliptic equations with borderline Hardy potentials, J. d'Analyse Mathématique, 123 (2014), 303-340. doi: 10.1007/s11854-014-0022-9.

[18]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Func. Anal., 192 (2002), 186-233. doi: 10.1006/jfan.2001.3900.

[19]

A. García and G. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375.

[20]

M. Ghergu and S. Taliaferro, Isolated Singularities in Partial Differential Inequalities, Cambridge University Press, 2016.

[21]

B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406.

[22]

Q. Han and F. Lin, Elliptic Partial Differential Equations, American Mathematical Soc., 2000. doi: 10.1090/cln/001.

[23]

W. Jeong and Y. Lee, Stable solutions and finite Morse index solutions of nonlinear elliptic equations with Hardy potential, Nonl. Anal. T.M.A., 87 (2013), 126-145. doi: 10.1016/j.na.2013.04.007.

[24]

P. Lions, Isolated singularities in semilinear problems, J. Diff. Eq., 38 (1980), 441-450. doi: 10.1016/0022-0396(80)90018-2.

[25]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geometry., 44 (1996), 331-370. doi: 10.4310/jdg/1214458975.

[26]

Y. Naito and T. Sato, Positive solutions for semilinear elliptic equations with singular forcing terms, J. Diff. Eq., 235 (2007), 439-483. doi: 10.1016/j.jde.2007.01.006.

[27]

F. Pacard, Existence and convergence of positive weak solutions of $ -Δ u = u^{\frac{N}{N-2\ }}$ in bounded domains of $ {\mathbb{R}}^N$, Calc. Var. and PDEs., 1 (1993), 243-265. doi: 10.1007/BF01191296.

[28]

Y. Pinchover and K. Tintarev, Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality, Indiana Univ. Math. J., 54 (2005), 1061-1074. doi: 10.1512/iumj.2005.54.2705.

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., 65 American Mathematical Society, 1986.

[30]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag, Berlin, 1996.

[31]

L. Véron, Singularities of Solutions of Second-Order Quasilinear Equations, Pitman Research Notes in Mathematics Series, 353. Longman, Harlow, 1996.

[1]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

[2]

Jianfeng Huang, Yulin Zhao. Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2861-2883. doi: 10.3934/dcds.2013.33.2861

[3]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[4]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[5]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[6]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[7]

Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513

[8]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[9]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[10]

Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747

[11]

Gary Froyland. On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 671-689. doi: 10.3934/dcds.2007.17.671

[12]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[13]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[14]

Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319

[15]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[16]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[17]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[18]

Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033

[19]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[20]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (76)
  • HTML views (129)
  • Cited by (0)

Other articles
by authors

[Back to Top]