In [
Citation: |
Figure 4.
Three types of Julia sets for maps in the family
Figure 5.
Four types of Julia sets for maps in the family
Figure 6.
Three types of Julia sets for maps in the family
Figure 8.
Four types of Julia sets for maps in the family
Figure 9.
Three types of Julia sets for maps in the family
Figure 10.
Four types of Julia sets for maps in the family
Figure 11.
Three types of Julia sets for maps in the family
[1] |
A. Beardon,
Iteration of Rational Functions, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-4422-6.![]() ![]() ![]() |
[2] |
R. L. Devaney, Dynamics of $ z^n+λ /z^n$; Why is the case $ n = 2$ crazy, Contemp. Math., 573 (2012), 49-65.
doi: 10.1090/conm/573/11379.![]() ![]() ![]() |
[3] |
R. L. Devaney, D. M. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana University Mathematics Journal, 54 (2005), 1621-1634.
doi: 10.1512/iumj.2005.54.2615.![]() ![]() ![]() |
[4] |
R. L. Devaney and E. D. Russell, Connectivity of Julia sets for singularly perturbed rational maps, in Chaos, CNN, Memristors and Beyond, World Scientific, (2013), 239--245.
doi: 10.1142/9789814434805_0018.![]() ![]() |
[5] |
H. M. Farkas and I. Kra,
Riemann Surfaces, Springer-Verlag, 1980.
![]() ![]() |
[6] |
J. Hu, F. G. Jimenez and O. Muzician, Rational maps with half symmetries, Julia sets, and Multibrot sets in parameter planes, Contemp. Math., 573 (2012), 119-146.
doi: 10.1090/conm/573/11393.![]() ![]() ![]() |
[7] |
C. McMullen, Automorphisms of rational maps, in Holomorphic Functions and Moduli, Vol. Ⅰ (Berkeley, CA, 1986), 31-60, Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988.
doi: 10.1007/978-1-4613-9602-4_3.![]() ![]() ![]() |
[8] |
J. Milnor,
Dynamics in one Complex Variable - Introductory Lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999.
![]() ![]() |
[9] |
——, On rational maps with two critical points, Experimental Mathematics, 9 (2000), 481-522.
doi: 10.1080/10586458.2000.10504657.![]() ![]() ![]() |
[10] |
S. Morosawa, Julia sets of sub-hyperbolic rational functions, Complex Variables Theory and Application, 41 (2000), 151-162.
doi: 10.1080/17476930008815244.![]() ![]() ![]() |
[11] |
M. Stiemer, Rational maps with Fatou components of arbitrary connectivity number, Computational Methods and Function Theory, 7 (2007), 415-427.
doi: 10.1007/BF03321654.![]() ![]() ![]() |
[12] |
G. T. Whyburn, Topological characterization of the Sierpinski curve, Fund. Math., 45 (1958), 320-324.
doi: 10.4064/fm-45-1-320-324.![]() ![]() ![]() |
[13] |
Y. Xiao and W. Qiu, The rational maps $ F_{λ }(z)=z^m+\frac{λ }{z^d}$ have no Herman rings, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 403-407.
doi: 10.1007/s12044-010-0044-x.![]() ![]() ![]() |
[14] |
Y. Xiao, W. Qiu and Y. Yin, On the dynamics of generalized McMullen maps, Ergod. Th. & Dynam. Sys., 34 (2014), 2093-2112.
doi: 10.1017/etds.2013.21.![]() ![]() ![]() |
[15] |
Y. Xiao and F. Yang, Singular perturbations of the unicritical polynomials with two parameters, Ergod. Th. & Dynam. Sys., 37 (2017), 1997-2016.
doi: 10.1017/etds.2015.114.![]() ![]() ![]() |