• Previous Article
    Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind
  • DCDS Home
  • This Issue
  • Next Article
    The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity
July  2018, 38(7): 3299-3355. doi: 10.3934/dcds.2018143

Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Received  June 2017 Revised  February 2018 Published  April 2018

A linear Boltzmann equation with non-autonomous collision operator is rigorously derived in the Boltzmann-Grad limit for the deterministic dynamics of a Rayleigh gas where a tagged particle is undergoing hard-sphere collisions with heterogeneously distributed background particles, which do not interact among each other. The validity of the linear Boltzmann equation holds for arbitrary long times under moderate assumptions on spatial continuity and higher moments of the initial distributions of the tagged particle and the heterogeneous, non-equilibrium distribution of the background. The empiric particle dynamics are compared to the Boltzmann dynamics using evolution systems for Kolmogorov equations of associated probability measures on collision histories.

Citation: Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143
References:
[1]

L. Arlotti and B. Lods, Integral representation of the linear Boltzmann operator for granular gas dynamics with applications, Journal of Statistical Physics, 129 (2007), 517-536.  doi: 10.1007/s10955-007-9402-1.  Google Scholar

[2]

L. ArlottiB. Lods and M. Mokhtar-Kharroubi, Non-autonomous honesty theory in abstract state spaces with applications to linear kinetic equations, Commun. Pure Appl. Anal., 13 (2014), 729-771.  doi: 10.3934/cpaa.2014.13.729.  Google Scholar

[3]

N. Ayi, From Newton's law to the linear Boltzmann equation without cut-off, Comm. Math. Phys., 350 (2017), 1219-1274.  doi: 10.1007/s00220-016-2821-6.  Google Scholar

[4]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.  Google Scholar

[5]

P. Billingsley, Probability and Measure, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, 2012.  Google Scholar

[6]

M. BisiJ. Cañizo and B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, Journal of Functional Analysis, 269 (2015), 1028-1069.  doi: 10.1016/j.jfa.2015.05.002.  Google Scholar

[7]

T. BodineauI. Gallagher and L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones Mathematicae, 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9.  Google Scholar

[8]

T. BodineauI. Gallagher and L. Saint-Raymond, From hard spheres dynamics to the Stokes-Fourier equations: an L2 analysis of the Boltzmann-Grad limit, Comptes Rendus Mathematique, 353 (2015), 623-627.  doi: 10.1016/j.crma.2015.04.013.  Google Scholar

[9]

C. BoldrighiniL. A. Bunimovich and Y. G. Sinaĭ, On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., 32 (1983), 477-501.  doi: 10.1007/BF01008951.  Google Scholar

[10]

M. Born and H. S. Green, A general kinetic theory of liquids. ⅰ. the molecular distribution functions, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 188, pages 10-18. The Royal Society, 1946. doi: 10.1098/rspa.1946.0093.  Google Scholar

[11]

T. Carleman, Problemes Mathématiques dans la Théorie Cinétique de Gaz, volume 2. Almqvist & Wiksells boktr, 1957. Google Scholar

[12]

C. Cercignani, The Boltzmann Equation and Its Applications, volume 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[13]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, volume 106 of Applied Mathematical Sciences, Springer-Verlag, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[14]

L. Desvillettes and M. Pulvirenti, The linear Boltzmann equation for long-range forces: A derivation from particle systems, Math. Models Methods Appl. Sci., 9 (1999), 1123-1145.  doi: 10.1142/S0218202599000506.  Google Scholar

[15]

S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Dynamics, Vol. Ⅰ, North-Holland, Amsterdam, 2002.  Google Scholar

[16]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics. European mathematical society, 2013.  Google Scholar

[17]

G. Gallavotti, Statistical Mechanics. A Short Treatise, Theoretical and Mathematical Physics. Springer-Verlag Berlin Heidelberg, 1999. doi: 10.1007/978-3-662-03952-6.  Google Scholar

[18]

F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse Math. (6), 17 (2008), 735-749.  doi: 10.5802/afst.1200.  Google Scholar

[19]

R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two-and three-dimensional rare gas in vacuum. Erratum and improved result, Comm. Math. Phys., 121 (1989), 143-146.   Google Scholar

[20]

R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum, Comm. Math. Phys., 105 (1986), 189-203.   Google Scholar

[21]

O. E. Lanford, Dynamical Systems, Theory and Applications: Battelle Seattle 1974 Rencontres, chapter Time evolution of large classical systems, pages 1-111. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975. Google Scholar

[22]

J. L. Lebowitz and H. Spohn, Transport properties of the Lorentz gas: Fourier's law, J. Statist. Phys., 19 (1978), 633-654.  doi: 10.1007/BF01011774.  Google Scholar

[23]

J. L. Lebowitz and H. Spohn, Microscopic basis for Fick's law for self-diffusion, J. Statist. Phys., 28 (1982), 539-556.  doi: 10.1007/BF01008323.  Google Scholar

[24]

J. L. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.  doi: 10.1007/BF01008247.  Google Scholar

[25]

H. Lorentz, The motion of electrons in metallic bodies ⅰ, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 7 (1905), 438-453.   Google Scholar

[26]

Kinetic transport in crystals, In XVIth International Congress on Mathematical Physics, pages 162-179. World Sci. Publ., Hackensack, NJ, 2010. doi: 10.1142/9789814304634_0009.  Google Scholar

[27]

J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Ann. of Math. (2), 174 (2011), 225-298.  doi: 10.4007/annals.2011.174.1.7.  Google Scholar

[28]

K. MatthiesG. Stone and F. Theil, The derivation of the linear Boltzmann equation from a Rayleigh gas particle model, Kinetic and Related Models, 11 (2018), 137-177.  doi: 10.3934/krm.2018008.  Google Scholar

[29]

K. Matthies and F. Theil, Validity and failure of the Boltzmann approximation of kinetic annihilation, Journal of Nonlinear Science, 20 (2010), 1-46.  doi: 10.1007/s00332-009-9049-y.  Google Scholar

[30]

K. Matthies and F. Theil, A semigroup approach to the justification of kinetic theory, SIAM Journal on Mathematical Analysis, 44 (2012), 4345-4379.  doi: 10.1137/120865598.  Google Scholar

[31]

R. Nagel and G. Nickel, Well-posedness for nonautonomous abstract Cauchy problems, In Evolution equations, semigroups and functional analysis (Milano, 2000), volume 50 of Progr. Nonlinear Differential Equations Appl., pages 279-293. Birkhäuser, Basel, 2002.  Google Scholar

[32]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[33]

M. Pulvirenti, Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum, Comm. Math. Phys., 113 (1987), 79-85.   Google Scholar

[34]

M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics 2014, 1450001, 64 pp. doi: 10.1142/S0129055X14500019.  Google Scholar

[35]

H. Spohn, The Lorentz process converges to a random flight process, Comm. Math. Phys., 60 (1978), 277-290.  doi: 10.1007/BF01612893.  Google Scholar

[36]

H. Spohn, Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics. Springer Berlin Heidelberg, 1991. doi: 10.1007/978-3-642-84371-6.  Google Scholar

[37]

K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Math. J., 18 (1988), 245-297.   Google Scholar

[38]

S. Ukai, The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem, Japan Journal of Industrial and Applied Mathematics, 18 (2001), 383-392.  doi: 10.1007/BF03168581.  Google Scholar

[39]

H. van BeijerenO. E. LanfordⅢ, J. L. Lebowitz and H. Spohn, Equilibrium time correlation functions in the low-density limit, J. Statist. Phys., 22 (1980), 237-257.  doi: 10.1007/BF01008050.  Google Scholar

show all references

References:
[1]

L. Arlotti and B. Lods, Integral representation of the linear Boltzmann operator for granular gas dynamics with applications, Journal of Statistical Physics, 129 (2007), 517-536.  doi: 10.1007/s10955-007-9402-1.  Google Scholar

[2]

L. ArlottiB. Lods and M. Mokhtar-Kharroubi, Non-autonomous honesty theory in abstract state spaces with applications to linear kinetic equations, Commun. Pure Appl. Anal., 13 (2014), 729-771.  doi: 10.3934/cpaa.2014.13.729.  Google Scholar

[3]

N. Ayi, From Newton's law to the linear Boltzmann equation without cut-off, Comm. Math. Phys., 350 (2017), 1219-1274.  doi: 10.1007/s00220-016-2821-6.  Google Scholar

[4]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.  Google Scholar

[5]

P. Billingsley, Probability and Measure, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, 2012.  Google Scholar

[6]

M. BisiJ. Cañizo and B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, Journal of Functional Analysis, 269 (2015), 1028-1069.  doi: 10.1016/j.jfa.2015.05.002.  Google Scholar

[7]

T. BodineauI. Gallagher and L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones Mathematicae, 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9.  Google Scholar

[8]

T. BodineauI. Gallagher and L. Saint-Raymond, From hard spheres dynamics to the Stokes-Fourier equations: an L2 analysis of the Boltzmann-Grad limit, Comptes Rendus Mathematique, 353 (2015), 623-627.  doi: 10.1016/j.crma.2015.04.013.  Google Scholar

[9]

C. BoldrighiniL. A. Bunimovich and Y. G. Sinaĭ, On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., 32 (1983), 477-501.  doi: 10.1007/BF01008951.  Google Scholar

[10]

M. Born and H. S. Green, A general kinetic theory of liquids. ⅰ. the molecular distribution functions, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 188, pages 10-18. The Royal Society, 1946. doi: 10.1098/rspa.1946.0093.  Google Scholar

[11]

T. Carleman, Problemes Mathématiques dans la Théorie Cinétique de Gaz, volume 2. Almqvist & Wiksells boktr, 1957. Google Scholar

[12]

C. Cercignani, The Boltzmann Equation and Its Applications, volume 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[13]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, volume 106 of Applied Mathematical Sciences, Springer-Verlag, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[14]

L. Desvillettes and M. Pulvirenti, The linear Boltzmann equation for long-range forces: A derivation from particle systems, Math. Models Methods Appl. Sci., 9 (1999), 1123-1145.  doi: 10.1142/S0218202599000506.  Google Scholar

[15]

S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Dynamics, Vol. Ⅰ, North-Holland, Amsterdam, 2002.  Google Scholar

[16]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics. European mathematical society, 2013.  Google Scholar

[17]

G. Gallavotti, Statistical Mechanics. A Short Treatise, Theoretical and Mathematical Physics. Springer-Verlag Berlin Heidelberg, 1999. doi: 10.1007/978-3-662-03952-6.  Google Scholar

[18]

F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse Math. (6), 17 (2008), 735-749.  doi: 10.5802/afst.1200.  Google Scholar

[19]

R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two-and three-dimensional rare gas in vacuum. Erratum and improved result, Comm. Math. Phys., 121 (1989), 143-146.   Google Scholar

[20]

R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum, Comm. Math. Phys., 105 (1986), 189-203.   Google Scholar

[21]

O. E. Lanford, Dynamical Systems, Theory and Applications: Battelle Seattle 1974 Rencontres, chapter Time evolution of large classical systems, pages 1-111. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975. Google Scholar

[22]

J. L. Lebowitz and H. Spohn, Transport properties of the Lorentz gas: Fourier's law, J. Statist. Phys., 19 (1978), 633-654.  doi: 10.1007/BF01011774.  Google Scholar

[23]

J. L. Lebowitz and H. Spohn, Microscopic basis for Fick's law for self-diffusion, J. Statist. Phys., 28 (1982), 539-556.  doi: 10.1007/BF01008323.  Google Scholar

[24]

J. L. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.  doi: 10.1007/BF01008247.  Google Scholar

[25]

H. Lorentz, The motion of electrons in metallic bodies ⅰ, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 7 (1905), 438-453.   Google Scholar

[26]

Kinetic transport in crystals, In XVIth International Congress on Mathematical Physics, pages 162-179. World Sci. Publ., Hackensack, NJ, 2010. doi: 10.1142/9789814304634_0009.  Google Scholar

[27]

J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Ann. of Math. (2), 174 (2011), 225-298.  doi: 10.4007/annals.2011.174.1.7.  Google Scholar

[28]

K. MatthiesG. Stone and F. Theil, The derivation of the linear Boltzmann equation from a Rayleigh gas particle model, Kinetic and Related Models, 11 (2018), 137-177.  doi: 10.3934/krm.2018008.  Google Scholar

[29]

K. Matthies and F. Theil, Validity and failure of the Boltzmann approximation of kinetic annihilation, Journal of Nonlinear Science, 20 (2010), 1-46.  doi: 10.1007/s00332-009-9049-y.  Google Scholar

[30]

K. Matthies and F. Theil, A semigroup approach to the justification of kinetic theory, SIAM Journal on Mathematical Analysis, 44 (2012), 4345-4379.  doi: 10.1137/120865598.  Google Scholar

[31]

R. Nagel and G. Nickel, Well-posedness for nonautonomous abstract Cauchy problems, In Evolution equations, semigroups and functional analysis (Milano, 2000), volume 50 of Progr. Nonlinear Differential Equations Appl., pages 279-293. Birkhäuser, Basel, 2002.  Google Scholar

[32]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[33]

M. Pulvirenti, Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum, Comm. Math. Phys., 113 (1987), 79-85.   Google Scholar

[34]

M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics 2014, 1450001, 64 pp. doi: 10.1142/S0129055X14500019.  Google Scholar

[35]

H. Spohn, The Lorentz process converges to a random flight process, Comm. Math. Phys., 60 (1978), 277-290.  doi: 10.1007/BF01612893.  Google Scholar

[36]

H. Spohn, Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics. Springer Berlin Heidelberg, 1991. doi: 10.1007/978-3-642-84371-6.  Google Scholar

[37]

K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Math. J., 18 (1988), 245-297.   Google Scholar

[38]

S. Ukai, The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem, Japan Journal of Industrial and Applied Mathematics, 18 (2001), 383-392.  doi: 10.1007/BF03168581.  Google Scholar

[39]

H. van BeijerenO. E. LanfordⅢ, J. L. Lebowitz and H. Spohn, Equilibrium time correlation functions in the low-density limit, J. Statist. Phys., 22 (1980), 237-257.  doi: 10.1007/BF01008050.  Google Scholar

Figure 1.  The parameters of a collision between the tagged particle and particle $j$.
Figure 2.  A tree with two collisions, the time of the final collision is $\tau$.
[1]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[2]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[3]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[4]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[5]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[6]

Thibaut Allemand. Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kinetic & Related Models, 2009, 2 (2) : 379-402. doi: 10.3934/krm.2009.2.379

[7]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[8]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[9]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[10]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[11]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[12]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[13]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[14]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[15]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[16]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[17]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[18]

Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic & Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533

[19]

Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559

[20]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (43)
  • HTML views (192)
  • Cited by (0)

Other articles
by authors

[Back to Top]