[1]
|
S. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Diff. Eqns., 62 (1986), 427-442.
doi: 10.1016/0022-0396(86)90093-8.
|
[2]
|
S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79.
|
[3]
|
V. I. Arnold, A branched covering $CP^2 \to S^4$, hyperbolicity and projective topology, Sib. Math. J., 29 (1988), 717-726.
doi: 10.1007/BF00970265.
|
[4]
|
V. I. Arnold and M. I. Vishik, et al., Some solved and unsolved problems in the theory of differential equations and mathematical physics, Russ. Math. Surv., 44 (1989), 157-171.
|
[5]
|
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam,
1992.
|
[6]
|
J. -M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller. With an
appendix by François Laudenbach, Astérisque, 205, Soc. Math. de France, 1992.
|
[7]
|
R. Bott, Morse theory indomitable, Public. Math. I.H. É.S., 68 (1988), 99-114.
|
[8]
|
P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1 (1988), 57-89.
|
[9]
|
P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations Ⅱ: The complete solution, J. Diff. Eqns., 81 (1989), 106-135.
doi: 10.1016/0022-0396(89)90180-0.
|
[10]
|
N. Chafee and E. Infante, A bifurcation problem for a nonlinear parabolic equation, J. Applicable Analysis, 4 (1974), 17-37.
doi: 10.1080/00036817408839081.
|
[11]
|
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloq.
AMS, Providence, 2002.
|
[12]
|
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative
Evolution Equations, Wiley, Chichester, 1994.
|
[13]
|
B. Fiedler, Global attractors of one-dimensional parabolic equations: Sixteen examples, Tatra Mountains Math. Publ., 4 (1994), 67-92.
|
[14]
|
B. Fiedler (ed.), Handbook of Dynamical Systems, 2, Elsevier, Amsterdam, 2002.
|
[15]
|
B. Fiedler and C. Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Diff. Eqns., 125 (1996), 239-281.
doi: 10.1006/jdeq.1996.0031.
|
[16]
|
B. Fiedler and C. Rocha, Realization of meander permutations by boundary value problems, J. Diff. Eqns., 156 (1999), 282-308.
doi: 10.1006/jdeq.1998.3532.
|
[17]
|
B. Fiedler and C. Rocha, Orbit equivalence of global attractors of semilinear parabolic differential equations, Trans. Amer. Math. Soc., 352 (2000), 257-284.
doi: 10.1090/S0002-9947-99-02209-6.
|
[18]
|
B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type, Ⅱ: Connection graphs, J. Diff. Eqns., 244 (2008), 1255-1286.
doi: 10.1016/j.jde.2007.09.015.
|
[19]
|
B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type, Ⅰ: Bipolar orientations and Hamiltonian paths, J. Reine Angew. Math., 635 (2009), 71-96.
doi: 10.1515/CRELLE.2009.076.
|
[20]
|
B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type, Ⅲ: Small and Platonic examples, J. Dyn. Diff. Eqns., 22 (2010), 121-162.
doi: 10.1007/s10884-009-9149-2.
|
[21]
|
B. Fiedler and C. Rocha, Nonlinear Sturm global attractors: Unstable manifold decompositions as regular CW-complexes, Discr. Cont. Dyn. Sys., 34 (2014), 5099-5122.
doi: 10.3934/dcds.2014.34.5099.
|
[22]
|
B. Fiedler and C. Rocha, Schoenflies spheres as boundaries of bounded unstable manifolds in gradient Sturm systems, J. Dyn. Diff. Eqns., 27 (2015), 597-626.
doi: 10.1007/s10884-013-9311-8.
|
[23]
|
B. Fiedler and C. Rocha, Sturm 3-balls and global attractors 1: Thom-Smale complexes and
meanders, arXiv: 1611.02003, 2016; São Paulo J. Math. Sc. (2017).
doi: 10.1007/s40863-017-0082-8.
|
[24]
|
B. Fiedler and C. Rocha, Sturm 3-balls and global attractors 2: Design of Thom-Smale
complexes, arXiv: 1704.00344, 2017; to appear in J. Dyn. Diff. Eqns.
|
[25]
|
B. Fiedler and C. Rocha, Boundary orders of equilibria in Sturm global attractors, In preparation, 2018.
|
[26]
|
B. Fiedler and A. Scheel, Spatio-temporal dynamics of reaction-diffusion patterns, In Trends
in Nonlinear Analysis, M. Kirkilionis et al. (eds.), Springer-Verlag, Berlin, 2003, 23–152.
|
[27]
|
B. Fiedler, C. Rocha and M. Wolfrum, A permutation characterization of Sturm global attractors of Hamiltonian type, J. Diff. Eqns., 252 (2012), 588-623.
doi: 10.1016/j.jde.2011.08.013.
|
[28]
|
B. Fiedler, C. Grotta-Ragazzo and C. Rocha, An explicit Lyapunov function for reflection symmetric parabolic differential equations on the circle, Russ. Math. Surveys., 69 (2014), 419-433.
|
[29]
|
J. M. Franks, Morse-Smale flows and homotopy theory, Topology, 18 (1979), 199-215.
doi: 10.1016/0040-9383(79)90003-X.
|
[30]
|
R. Fritsch and R. A. Piccinini, Cellular Structures in Topology, Cambridge University Press,
1990.
doi: 10.1017/CBO9780511983948.
|
[31]
|
G. Fusco and W. Oliva, Jacobi matrices and transversality, Proc. Royal Soc. Edinburgh A, 109 (1988), 231-243.
doi: 10.1017/S0308210500027748.
|
[32]
|
G. Fusco and C. Rocha, A permutation related to the dynamics of a scalar parabolic PDE, J. Diff. Eqns., 91 (1991), 111-137.
doi: 10.1016/0022-0396(91)90134-U.
|
[33]
|
V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications, Chapman & Hall, Boca Raton, 2004.
doi: 10.1201/9780203998069.
|
[34]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surv., 25. AMS, Providence,
1988.
|
[35]
|
J. K. Hale, L. T. Magalh˜aes and W. M. Oliva, Dynamics in Infinite Dimensions, SpringerVerlag, New York, 2002.
doi: 10.1007/b100032.
|
[36]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 804,
Springer-Verlag, New York, 1981.
|
[37]
|
D. Henry, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Diff. Eqns., 59 (1985), 165-205.
doi: 10.1016/0022-0396(85)90153-6.
|
[38]
|
B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lect. Notes Math. 2018,
Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-18460-4.
|
[39]
|
A. Karnauhova, Meanders, de Gruyter, Berlin, 2017.
doi: 10.1515/9783110533026.
|
[40]
|
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, 1991.
doi: 10.1017/CBO9780511569418.
|
[41]
|
Ph. Lappicy, B. Fiedler, A Lyapunov function for fully nonlinear parabolic equations in one
spatial variable, arXiv: 1802.09754 [math. DS], submitted 2018.
|
[42]
|
J. Mallet-Paret, Morse decompositions for delay-differential equations, J. Diff. Eqns., 72 (1988), 270-315.
doi: 10.1016/0022-0396(88)90157-X.
|
[43]
|
H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 18 (1978), 221-227.
doi: 10.1215/kjm/1250522572.
|
[44]
|
H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA, 29 (1982), 401-441.
|
[45]
|
H. Matano and K.-I. Nakamura, The global attractor of semilinear parabolic equations on ${S^1}$, Discr. Cont. Dyn. Sys., 3 (1997), 1-24.
|
[46]
|
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, SpringerVerlag, New York, 1982.
|
[47]
|
J. Palis and S. Smale, Structural stability theorems, Global Analysis. Proc. Simp. in Pure
Math. AMS, Providence, (1970), 223–231.
|
[48]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
[49]
|
G. Raugel, Global attractors in partial differential equations, In [14], (2002), 885–982.
|
[50]
|
C. Rocha, Properties of the attractor of a scalar parabolic PDE, J. Dyn. Diff. Eqns., 3 (1991), 575-591.
doi: 10.1007/BF01049100.
|
[51]
|
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York,
2002.
doi: 10.1007/978-1-4757-5037-9.
|
[52]
|
C. Sturm, Mémoire sur une classe d'équations à différences partielles, Collected Works of Charles François Sturm, (2009), 505-576.
doi: 10.1007/978-3-7643-7990-2_33.
|
[53]
|
H. Tanabe, Equations of Evolution, Pitman, Boston, 1979.
|
[54]
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8.
|
[55]
|
T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, (Russian) Differencial’nye Uravnenija, 4 (1968), 34-45.
|