• Previous Article
    Principal Floquet subspaces and exponential separations of type Ⅱ with applications to random delay differential equations
  • DCDS Home
  • This Issue
  • Next Article
    Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics
December  2018, 38(12): 6149-6162. doi: 10.3934/dcds.2018153

On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russia

Received  September 2017 Revised  December 2017 Published  April 2018

We deal with a problem of target control synthesis for dynamical bilinear discrete-time systems under uncertainties (which describe disturbances, perturbations or unmodelled dynamics) and state constraints. Namely we consider systems with controls that appear not only additively in the right hand sides of the system equations but also in the coefficients of the system. We assume that there are uncertainties of a set-membership kind when we know only the bounding sets of the unknown terms. We presume that we have uncertain terms of two kinds, namely, a parallelotope-bounded additive uncertain term and interval-bounded uncertainties in the coefficients. Moreover the systems are considered under constraints on the state ("under viability constraints"). We continue to develop the method of control synthesis using polyhedral (parallelotope-valued) solvability tubes. The technique for calculation of the mentioned polyhedral tubes by the recurrent relations is presented. Control strategies, which can be constructed on the base of the polyhedral solvability tubes, are proposed. Illustrative examples are considered.

Citation: Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153
References:
[1]

L. AsselbornD. Groß and O. Stursberg, Control of uncertain nonlinear systems using ellipsoidal reachability calculus, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 23), 46 (2013), 50-55.  doi: 10.3182/20130904-3-FR-2041.00204.  Google Scholar

[2]

N. Athanasopoulos and G. Bitsoris, Unconstrained and constrained stabilisation of bilinear discrete-time systems using polyhedral Lyapunov functions, Int. J. Control, 83 (2010), 2483-2493.  doi: 10.1080/00207179.2010.531396.  Google Scholar

[3]

J. -P. Aubin, A. M. Bayen and P. Saint-Pierre, Viability Theory: New Directions, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-16684-6.  Google Scholar

[4]

R. Baier and F. Lempio, Computing Aumann's integral, in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, Birkhäuser, Boston, 18 (1994), 71–92. doi: 10.1007/978-3-642-78787-4_7.  Google Scholar

[5]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Trans. Automat. Control., 24 (1979), 346-349.  doi: 10.1109/TAC.1979.1102011.  Google Scholar

[6]

P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-valued numerical analysis for optimal control and differential games, in Stochastic and Differential Games: Theory and Numerical Methods (Birkhäuser, Boston, 1999), Ann. Internat. Soc. Dynam. Games, 4 (1999), 177–247.  Google Scholar

[7]

F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994. Google Scholar

[8]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty, Comput. Math. Math. Phys., 53 (2013), 34–43, Transl. from Zh. Vychisl. Mat. Mat. Fiz. , 53 (2013), no. 1, 47–57 [Russian]. doi: 10.1134/S096554251301003X.  Google Scholar

[9]

T. DonchevE. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Differential Equations, 243 (2007), 301-328.  doi: 10.1016/j.jde.2007.05.011.  Google Scholar

[10]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 410–419.  Google Scholar

[11]

T. F. Filippova, Ellipsoidal estimates of reachable sets for control systems with nonlinear terms, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 1), 50 (2017), 15355-15360.  doi: 10.1016/j.ifacol.2017.08.2460.  Google Scholar

[12]

A. GiorgilliA. DelshamsE. FontichL. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[13]

M. I. Gusev, Application of penalty function method to computation of reachable sets for control systems with state constraints, AIP Conf. Proc., 1773 (2016), 050003.  doi: 10.1063/1.4964973.  Google Scholar

[14]

L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. doi: 10.1007/978-1-4471-0249-6.  Google Scholar

[15]

E. K. Kostousova, Control synthesis via parallelotopes: Optimization and parallel computations, Optim. Methods Softw., 14 (2001), 267-310.  doi: 10.1080/10556780108805805.  Google Scholar

[16]

E. K. Kostousova, Polyhedral Approximations in Problems of Guaranteed Control and Estimation, Doctoral dissertation, Institute of Nathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2005 [Russian]. Google Scholar

[17]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems, in Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 9 (2006), 84–105 [Russian].  Google Scholar

[18]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 864–873.  Google Scholar

[19]

E. K. Kostousova, On target control synthesis under set-membership uncertainties using polyhedral techniques, in System Modeling and Optimization, 26th IFIP TC 7 Conference, CSMO 2013, IFIP AICT, 443 (2014), 170–180. doi: 10.1007/978-3-662-45504-3_16.  Google Scholar

[20]

E. K. Kostousova, On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques, Discrete Contin. Dyn. Syst. 2015, Dynamical Systems, Differential Equations and Applications, 10th AIMS Conference, Suppl. (2015), 723–732. doi: 10.3934/proc.2015.0723.  Google Scholar

[21]

E. K. Kostousova, On a polyhedral method for solving problems of control strategy synthesis, Proc. Steklov Inst. Math. , 292 (2016), Suppl. 1, S140–S155, Transl. from Tr. Inst. Mat. Mekh. , 20 (2014), no. 4,153–167. doi: 10.1134/S0081543816020127.  Google Scholar

[22]

E. K. Kostousova, On feedback target control for uncertain discrete-time bilinear systems with state constraints through polyhedral techniques, AIP Conf. Proc., 1895 (2017), 110004.  doi: 10.1063/1.5007410.  Google Scholar

[23]

N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3716-7.  Google Scholar

[24]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997. doi: 10.1007/978-1-4612-0277-6.  Google Scholar

[25]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes., Theory and Computation (Systems & Control: Foundations & Applications, Book 85), Birkhäuser Basel, 2014. doi: 10.1007/978-3-319-10277-1.  Google Scholar

[26]

A. A. Kurzhanskiy and P. Varaiya, Reach set computation and control synthesis for discrete-time dynamical systems with disturbances, Automatica J. IFAC, 47 (2011), 1414-1426.  doi: 10.1016/j.automatica.2011.02.009.  Google Scholar

[27]

J. C. LagariasJ. A. ReedsM. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal of Optimization, 9 (1999), 112-147.  doi: 10.1137/S1052623496303470.  Google Scholar

[28]

R. de la Llave, A tutorial on KAM theory, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69 (2001), 175–292. doi: 10.1090/pspum/069/1858536.  Google Scholar

[29]

A. V. Lotov, Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system, Doklady Mathematics, 95 (2017), 95–98, Transl. from Dokl. Akad. Nauk, 472 (2017), no. 1, 18–22 [Russian]. doi: 10.1134/S1064562417010045.  Google Scholar

[30]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅰ: Aircraft model and control schemes, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 277–284. doi: 10.1109/MED.2017.7984131.  Google Scholar

[31]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅱ: Simulations and model enhancement, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 285–290. doi: 10.1109/MED.2017.7984132.  Google Scholar

[32]

R. R. Mohler, Bilinear Control Processes. With Applications to Engineering, Ecology, and Medicine, Academic Press, New York and London, 1973.  Google Scholar

[33]

M. S. Nikol'skii, On controllable variants of Richardson's model in political science, Proc. Steklov Inst. Math., 275 (2011), Suppl.1, S78-S85.  doi: 10.1134/S0081543811090070.  Google Scholar

[34]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finitedifference operators for constructing generalized solutions of Hamilton-Jacobi equations, J. Comput. Systems Sci. Internat., 33 (1995), no. 6,127–139, Transl. from Izv. Ross. Akad. Nauk Tekhn. Kibernet., (1994), no. 3,173–185 [Russian].  Google Scholar

[35]

A. Yu. Vazhentsev, On internal ellipsoidal approximations for problems of control synthesis with bounded coordinates, J. Comput. Systems Sci. Internat., 39 (2000), 399-406, Transl.   Google Scholar

[36]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

show all references

References:
[1]

L. AsselbornD. Groß and O. Stursberg, Control of uncertain nonlinear systems using ellipsoidal reachability calculus, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 23), 46 (2013), 50-55.  doi: 10.3182/20130904-3-FR-2041.00204.  Google Scholar

[2]

N. Athanasopoulos and G. Bitsoris, Unconstrained and constrained stabilisation of bilinear discrete-time systems using polyhedral Lyapunov functions, Int. J. Control, 83 (2010), 2483-2493.  doi: 10.1080/00207179.2010.531396.  Google Scholar

[3]

J. -P. Aubin, A. M. Bayen and P. Saint-Pierre, Viability Theory: New Directions, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-16684-6.  Google Scholar

[4]

R. Baier and F. Lempio, Computing Aumann's integral, in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, Birkhäuser, Boston, 18 (1994), 71–92. doi: 10.1007/978-3-642-78787-4_7.  Google Scholar

[5]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Trans. Automat. Control., 24 (1979), 346-349.  doi: 10.1109/TAC.1979.1102011.  Google Scholar

[6]

P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-valued numerical analysis for optimal control and differential games, in Stochastic and Differential Games: Theory and Numerical Methods (Birkhäuser, Boston, 1999), Ann. Internat. Soc. Dynam. Games, 4 (1999), 177–247.  Google Scholar

[7]

F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994. Google Scholar

[8]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty, Comput. Math. Math. Phys., 53 (2013), 34–43, Transl. from Zh. Vychisl. Mat. Mat. Fiz. , 53 (2013), no. 1, 47–57 [Russian]. doi: 10.1134/S096554251301003X.  Google Scholar

[9]

T. DonchevE. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Differential Equations, 243 (2007), 301-328.  doi: 10.1016/j.jde.2007.05.011.  Google Scholar

[10]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 410–419.  Google Scholar

[11]

T. F. Filippova, Ellipsoidal estimates of reachable sets for control systems with nonlinear terms, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 1), 50 (2017), 15355-15360.  doi: 10.1016/j.ifacol.2017.08.2460.  Google Scholar

[12]

A. GiorgilliA. DelshamsE. FontichL. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[13]

M. I. Gusev, Application of penalty function method to computation of reachable sets for control systems with state constraints, AIP Conf. Proc., 1773 (2016), 050003.  doi: 10.1063/1.4964973.  Google Scholar

[14]

L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. doi: 10.1007/978-1-4471-0249-6.  Google Scholar

[15]

E. K. Kostousova, Control synthesis via parallelotopes: Optimization and parallel computations, Optim. Methods Softw., 14 (2001), 267-310.  doi: 10.1080/10556780108805805.  Google Scholar

[16]

E. K. Kostousova, Polyhedral Approximations in Problems of Guaranteed Control and Estimation, Doctoral dissertation, Institute of Nathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2005 [Russian]. Google Scholar

[17]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems, in Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 9 (2006), 84–105 [Russian].  Google Scholar

[18]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 864–873.  Google Scholar

[19]

E. K. Kostousova, On target control synthesis under set-membership uncertainties using polyhedral techniques, in System Modeling and Optimization, 26th IFIP TC 7 Conference, CSMO 2013, IFIP AICT, 443 (2014), 170–180. doi: 10.1007/978-3-662-45504-3_16.  Google Scholar

[20]

E. K. Kostousova, On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques, Discrete Contin. Dyn. Syst. 2015, Dynamical Systems, Differential Equations and Applications, 10th AIMS Conference, Suppl. (2015), 723–732. doi: 10.3934/proc.2015.0723.  Google Scholar

[21]

E. K. Kostousova, On a polyhedral method for solving problems of control strategy synthesis, Proc. Steklov Inst. Math. , 292 (2016), Suppl. 1, S140–S155, Transl. from Tr. Inst. Mat. Mekh. , 20 (2014), no. 4,153–167. doi: 10.1134/S0081543816020127.  Google Scholar

[22]

E. K. Kostousova, On feedback target control for uncertain discrete-time bilinear systems with state constraints through polyhedral techniques, AIP Conf. Proc., 1895 (2017), 110004.  doi: 10.1063/1.5007410.  Google Scholar

[23]

N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3716-7.  Google Scholar

[24]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997. doi: 10.1007/978-1-4612-0277-6.  Google Scholar

[25]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes., Theory and Computation (Systems & Control: Foundations & Applications, Book 85), Birkhäuser Basel, 2014. doi: 10.1007/978-3-319-10277-1.  Google Scholar

[26]

A. A. Kurzhanskiy and P. Varaiya, Reach set computation and control synthesis for discrete-time dynamical systems with disturbances, Automatica J. IFAC, 47 (2011), 1414-1426.  doi: 10.1016/j.automatica.2011.02.009.  Google Scholar

[27]

J. C. LagariasJ. A. ReedsM. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal of Optimization, 9 (1999), 112-147.  doi: 10.1137/S1052623496303470.  Google Scholar

[28]

R. de la Llave, A tutorial on KAM theory, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69 (2001), 175–292. doi: 10.1090/pspum/069/1858536.  Google Scholar

[29]

A. V. Lotov, Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system, Doklady Mathematics, 95 (2017), 95–98, Transl. from Dokl. Akad. Nauk, 472 (2017), no. 1, 18–22 [Russian]. doi: 10.1134/S1064562417010045.  Google Scholar

[30]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅰ: Aircraft model and control schemes, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 277–284. doi: 10.1109/MED.2017.7984131.  Google Scholar

[31]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅱ: Simulations and model enhancement, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 285–290. doi: 10.1109/MED.2017.7984132.  Google Scholar

[32]

R. R. Mohler, Bilinear Control Processes. With Applications to Engineering, Ecology, and Medicine, Academic Press, New York and London, 1973.  Google Scholar

[33]

M. S. Nikol'skii, On controllable variants of Richardson's model in political science, Proc. Steklov Inst. Math., 275 (2011), Suppl.1, S78-S85.  doi: 10.1134/S0081543811090070.  Google Scholar

[34]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finitedifference operators for constructing generalized solutions of Hamilton-Jacobi equations, J. Comput. Systems Sci. Internat., 33 (1995), no. 6,127–139, Transl. from Izv. Ross. Akad. Nauk Tekhn. Kibernet., (1994), no. 3,173–185 [Russian].  Google Scholar

[35]

A. Yu. Vazhentsev, On internal ellipsoidal approximations for problems of control synthesis with bounded coordinates, J. Comput. Systems Sci. Internat., 39 (2000), 399-406, Transl.   Google Scholar

[36]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

Figure 1.  Results of polyhedral synthesis for case (A) using the following controls: only control $u $, only $U $, both $u$ and $U$
Figure 2.  Results of polyhedral synthesis with both controls $u$ and $U$ for cases (A), (B, ⅱ), and (B, ⅱ; SC)
Figure 3.  Suitable polyhedral tubs $\mathcal{P}^{-}{[\cdot]}$ and corresponding controlled trajectories with both $u$ and $U$ for cases (A) and (B, ⅱ; SC)
Figure 4.  Corresponding controls $u$ and $U$ for cases (A) and (B, ⅱ; SC)
[1]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[2]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[3]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[4]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[5]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[7]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[8]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[9]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[10]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[12]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[13]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[14]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[15]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[16]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[17]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[18]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[19]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[20]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (188)
  • HTML views (479)
  • Cited by (1)

Other articles
by authors

[Back to Top]