• Previous Article
    Principal Floquet subspaces and exponential separations of type Ⅱ with applications to random delay differential equations
  • DCDS Home
  • This Issue
  • Next Article
    Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics
December  2018, 38(12): 6149-6162. doi: 10.3934/dcds.2018153

On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russia

Received  September 2017 Revised  December 2017 Published  April 2018

We deal with a problem of target control synthesis for dynamical bilinear discrete-time systems under uncertainties (which describe disturbances, perturbations or unmodelled dynamics) and state constraints. Namely we consider systems with controls that appear not only additively in the right hand sides of the system equations but also in the coefficients of the system. We assume that there are uncertainties of a set-membership kind when we know only the bounding sets of the unknown terms. We presume that we have uncertain terms of two kinds, namely, a parallelotope-bounded additive uncertain term and interval-bounded uncertainties in the coefficients. Moreover the systems are considered under constraints on the state ("under viability constraints"). We continue to develop the method of control synthesis using polyhedral (parallelotope-valued) solvability tubes. The technique for calculation of the mentioned polyhedral tubes by the recurrent relations is presented. Control strategies, which can be constructed on the base of the polyhedral solvability tubes, are proposed. Illustrative examples are considered.

Citation: Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153
References:
[1]

L. AsselbornD. Groß and O. Stursberg, Control of uncertain nonlinear systems using ellipsoidal reachability calculus, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 23), 46 (2013), 50-55.  doi: 10.3182/20130904-3-FR-2041.00204.  Google Scholar

[2]

N. Athanasopoulos and G. Bitsoris, Unconstrained and constrained stabilisation of bilinear discrete-time systems using polyhedral Lyapunov functions, Int. J. Control, 83 (2010), 2483-2493.  doi: 10.1080/00207179.2010.531396.  Google Scholar

[3]

J. -P. Aubin, A. M. Bayen and P. Saint-Pierre, Viability Theory: New Directions, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-16684-6.  Google Scholar

[4]

R. Baier and F. Lempio, Computing Aumann's integral, in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, Birkhäuser, Boston, 18 (1994), 71–92. doi: 10.1007/978-3-642-78787-4_7.  Google Scholar

[5]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Trans. Automat. Control., 24 (1979), 346-349.  doi: 10.1109/TAC.1979.1102011.  Google Scholar

[6]

P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-valued numerical analysis for optimal control and differential games, in Stochastic and Differential Games: Theory and Numerical Methods (Birkhäuser, Boston, 1999), Ann. Internat. Soc. Dynam. Games, 4 (1999), 177–247.  Google Scholar

[7]

F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994. Google Scholar

[8]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty, Comput. Math. Math. Phys., 53 (2013), 34–43, Transl. from Zh. Vychisl. Mat. Mat. Fiz. , 53 (2013), no. 1, 47–57 [Russian]. doi: 10.1134/S096554251301003X.  Google Scholar

[9]

T. DonchevE. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Differential Equations, 243 (2007), 301-328.  doi: 10.1016/j.jde.2007.05.011.  Google Scholar

[10]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 410–419.  Google Scholar

[11]

T. F. Filippova, Ellipsoidal estimates of reachable sets for control systems with nonlinear terms, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 1), 50 (2017), 15355-15360.  doi: 10.1016/j.ifacol.2017.08.2460.  Google Scholar

[12]

A. GiorgilliA. DelshamsE. FontichL. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[13]

M. I. Gusev, Application of penalty function method to computation of reachable sets for control systems with state constraints, AIP Conf. Proc., 1773 (2016), 050003.  doi: 10.1063/1.4964973.  Google Scholar

[14]

L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. doi: 10.1007/978-1-4471-0249-6.  Google Scholar

[15]

E. K. Kostousova, Control synthesis via parallelotopes: Optimization and parallel computations, Optim. Methods Softw., 14 (2001), 267-310.  doi: 10.1080/10556780108805805.  Google Scholar

[16]

E. K. Kostousova, Polyhedral Approximations in Problems of Guaranteed Control and Estimation, Doctoral dissertation, Institute of Nathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2005 [Russian]. Google Scholar

[17]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems, in Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 9 (2006), 84–105 [Russian].  Google Scholar

[18]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 864–873.  Google Scholar

[19]

E. K. Kostousova, On target control synthesis under set-membership uncertainties using polyhedral techniques, in System Modeling and Optimization, 26th IFIP TC 7 Conference, CSMO 2013, IFIP AICT, 443 (2014), 170–180. doi: 10.1007/978-3-662-45504-3_16.  Google Scholar

[20]

E. K. Kostousova, On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques, Discrete Contin. Dyn. Syst. 2015, Dynamical Systems, Differential Equations and Applications, 10th AIMS Conference, Suppl. (2015), 723–732. doi: 10.3934/proc.2015.0723.  Google Scholar

[21]

E. K. Kostousova, On a polyhedral method for solving problems of control strategy synthesis, Proc. Steklov Inst. Math. , 292 (2016), Suppl. 1, S140–S155, Transl. from Tr. Inst. Mat. Mekh. , 20 (2014), no. 4,153–167. doi: 10.1134/S0081543816020127.  Google Scholar

[22]

E. K. Kostousova, On feedback target control for uncertain discrete-time bilinear systems with state constraints through polyhedral techniques, AIP Conf. Proc., 1895 (2017), 110004.  doi: 10.1063/1.5007410.  Google Scholar

[23]

N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3716-7.  Google Scholar

[24]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997. doi: 10.1007/978-1-4612-0277-6.  Google Scholar

[25]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes., Theory and Computation (Systems & Control: Foundations & Applications, Book 85), Birkhäuser Basel, 2014. doi: 10.1007/978-3-319-10277-1.  Google Scholar

[26]

A. A. Kurzhanskiy and P. Varaiya, Reach set computation and control synthesis for discrete-time dynamical systems with disturbances, Automatica J. IFAC, 47 (2011), 1414-1426.  doi: 10.1016/j.automatica.2011.02.009.  Google Scholar

[27]

J. C. LagariasJ. A. ReedsM. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal of Optimization, 9 (1999), 112-147.  doi: 10.1137/S1052623496303470.  Google Scholar

[28]

R. de la Llave, A tutorial on KAM theory, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69 (2001), 175–292. doi: 10.1090/pspum/069/1858536.  Google Scholar

[29]

A. V. Lotov, Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system, Doklady Mathematics, 95 (2017), 95–98, Transl. from Dokl. Akad. Nauk, 472 (2017), no. 1, 18–22 [Russian]. doi: 10.1134/S1064562417010045.  Google Scholar

[30]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅰ: Aircraft model and control schemes, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 277–284. doi: 10.1109/MED.2017.7984131.  Google Scholar

[31]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅱ: Simulations and model enhancement, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 285–290. doi: 10.1109/MED.2017.7984132.  Google Scholar

[32]

R. R. Mohler, Bilinear Control Processes. With Applications to Engineering, Ecology, and Medicine, Academic Press, New York and London, 1973.  Google Scholar

[33]

M. S. Nikol'skii, On controllable variants of Richardson's model in political science, Proc. Steklov Inst. Math., 275 (2011), Suppl.1, S78-S85.  doi: 10.1134/S0081543811090070.  Google Scholar

[34]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finitedifference operators for constructing generalized solutions of Hamilton-Jacobi equations, J. Comput. Systems Sci. Internat., 33 (1995), no. 6,127–139, Transl. from Izv. Ross. Akad. Nauk Tekhn. Kibernet., (1994), no. 3,173–185 [Russian].  Google Scholar

[35]

A. Yu. Vazhentsev, On internal ellipsoidal approximations for problems of control synthesis with bounded coordinates, J. Comput. Systems Sci. Internat., 39 (2000), 399-406, Transl.   Google Scholar

[36]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

show all references

References:
[1]

L. AsselbornD. Groß and O. Stursberg, Control of uncertain nonlinear systems using ellipsoidal reachability calculus, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 23), 46 (2013), 50-55.  doi: 10.3182/20130904-3-FR-2041.00204.  Google Scholar

[2]

N. Athanasopoulos and G. Bitsoris, Unconstrained and constrained stabilisation of bilinear discrete-time systems using polyhedral Lyapunov functions, Int. J. Control, 83 (2010), 2483-2493.  doi: 10.1080/00207179.2010.531396.  Google Scholar

[3]

J. -P. Aubin, A. M. Bayen and P. Saint-Pierre, Viability Theory: New Directions, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-16684-6.  Google Scholar

[4]

R. Baier and F. Lempio, Computing Aumann's integral, in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, Birkhäuser, Boston, 18 (1994), 71–92. doi: 10.1007/978-3-642-78787-4_7.  Google Scholar

[5]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Trans. Automat. Control., 24 (1979), 346-349.  doi: 10.1109/TAC.1979.1102011.  Google Scholar

[6]

P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-valued numerical analysis for optimal control and differential games, in Stochastic and Differential Games: Theory and Numerical Methods (Birkhäuser, Boston, 1999), Ann. Internat. Soc. Dynam. Games, 4 (1999), 177–247.  Google Scholar

[7]

F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994. Google Scholar

[8]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty, Comput. Math. Math. Phys., 53 (2013), 34–43, Transl. from Zh. Vychisl. Mat. Mat. Fiz. , 53 (2013), no. 1, 47–57 [Russian]. doi: 10.1134/S096554251301003X.  Google Scholar

[9]

T. DonchevE. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Differential Equations, 243 (2007), 301-328.  doi: 10.1016/j.jde.2007.05.011.  Google Scholar

[10]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 410–419.  Google Scholar

[11]

T. F. Filippova, Ellipsoidal estimates of reachable sets for control systems with nonlinear terms, IFAC Proceedings Volumes (IFAC PapersOnline)(Issue 1), 50 (2017), 15355-15360.  doi: 10.1016/j.ifacol.2017.08.2460.  Google Scholar

[12]

A. GiorgilliA. DelshamsE. FontichL. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[13]

M. I. Gusev, Application of penalty function method to computation of reachable sets for control systems with state constraints, AIP Conf. Proc., 1773 (2016), 050003.  doi: 10.1063/1.4964973.  Google Scholar

[14]

L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. doi: 10.1007/978-1-4471-0249-6.  Google Scholar

[15]

E. K. Kostousova, Control synthesis via parallelotopes: Optimization and parallel computations, Optim. Methods Softw., 14 (2001), 267-310.  doi: 10.1080/10556780108805805.  Google Scholar

[16]

E. K. Kostousova, Polyhedral Approximations in Problems of Guaranteed Control and Estimation, Doctoral dissertation, Institute of Nathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2005 [Russian]. Google Scholar

[17]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems, in Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 9 (2006), 84–105 [Russian].  Google Scholar

[18]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical Systems, Differential Equations and Applications, 8th AIMS Conference, Suppl. (2011), 864–873.  Google Scholar

[19]

E. K. Kostousova, On target control synthesis under set-membership uncertainties using polyhedral techniques, in System Modeling and Optimization, 26th IFIP TC 7 Conference, CSMO 2013, IFIP AICT, 443 (2014), 170–180. doi: 10.1007/978-3-662-45504-3_16.  Google Scholar

[20]

E. K. Kostousova, On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques, Discrete Contin. Dyn. Syst. 2015, Dynamical Systems, Differential Equations and Applications, 10th AIMS Conference, Suppl. (2015), 723–732. doi: 10.3934/proc.2015.0723.  Google Scholar

[21]

E. K. Kostousova, On a polyhedral method for solving problems of control strategy synthesis, Proc. Steklov Inst. Math. , 292 (2016), Suppl. 1, S140–S155, Transl. from Tr. Inst. Mat. Mekh. , 20 (2014), no. 4,153–167. doi: 10.1134/S0081543816020127.  Google Scholar

[22]

E. K. Kostousova, On feedback target control for uncertain discrete-time bilinear systems with state constraints through polyhedral techniques, AIP Conf. Proc., 1895 (2017), 110004.  doi: 10.1063/1.5007410.  Google Scholar

[23]

N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3716-7.  Google Scholar

[24]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997. doi: 10.1007/978-1-4612-0277-6.  Google Scholar

[25]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes., Theory and Computation (Systems & Control: Foundations & Applications, Book 85), Birkhäuser Basel, 2014. doi: 10.1007/978-3-319-10277-1.  Google Scholar

[26]

A. A. Kurzhanskiy and P. Varaiya, Reach set computation and control synthesis for discrete-time dynamical systems with disturbances, Automatica J. IFAC, 47 (2011), 1414-1426.  doi: 10.1016/j.automatica.2011.02.009.  Google Scholar

[27]

J. C. LagariasJ. A. ReedsM. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal of Optimization, 9 (1999), 112-147.  doi: 10.1137/S1052623496303470.  Google Scholar

[28]

R. de la Llave, A tutorial on KAM theory, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69 (2001), 175–292. doi: 10.1090/pspum/069/1858536.  Google Scholar

[29]

A. V. Lotov, Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system, Doklady Mathematics, 95 (2017), 95–98, Transl. from Dokl. Akad. Nauk, 472 (2017), no. 1, 18–22 [Russian]. doi: 10.1134/S1064562417010045.  Google Scholar

[30]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅰ: Aircraft model and control schemes, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 277–284. doi: 10.1109/MED.2017.7984131.  Google Scholar

[31]

K. Martynov, N. Botkin, V. Turova and J. Diepolder, Real-time control of aircraft takeoff in windshear. Part Ⅱ: Simulations and model enhancement, in 2017 25th Mediterranean Conference on Control and Automation (MED), IEEE Xplore Digital Library, (2017), 285–290. doi: 10.1109/MED.2017.7984132.  Google Scholar

[32]

R. R. Mohler, Bilinear Control Processes. With Applications to Engineering, Ecology, and Medicine, Academic Press, New York and London, 1973.  Google Scholar

[33]

M. S. Nikol'skii, On controllable variants of Richardson's model in political science, Proc. Steklov Inst. Math., 275 (2011), Suppl.1, S78-S85.  doi: 10.1134/S0081543811090070.  Google Scholar

[34]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finitedifference operators for constructing generalized solutions of Hamilton-Jacobi equations, J. Comput. Systems Sci. Internat., 33 (1995), no. 6,127–139, Transl. from Izv. Ross. Akad. Nauk Tekhn. Kibernet., (1994), no. 3,173–185 [Russian].  Google Scholar

[35]

A. Yu. Vazhentsev, On internal ellipsoidal approximations for problems of control synthesis with bounded coordinates, J. Comput. Systems Sci. Internat., 39 (2000), 399-406, Transl.   Google Scholar

[36]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

Figure 1.  Results of polyhedral synthesis for case (A) using the following controls: only control $u $, only $U $, both $u$ and $U$
Figure 2.  Results of polyhedral synthesis with both controls $u$ and $U$ for cases (A), (B, ⅱ), and (B, ⅱ; SC)
Figure 3.  Suitable polyhedral tubs $\mathcal{P}^{-}{[\cdot]}$ and corresponding controlled trajectories with both $u$ and $U$ for cases (A) and (B, ⅱ; SC)
Figure 4.  Corresponding controls $u$ and $U$ for cases (A) and (B, ⅱ; SC)
[1]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[8]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (174)
  • HTML views (476)
  • Cited by (1)

Other articles
by authors

[Back to Top]