\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global dynamics in a two-species chemotaxis-competition system with two signals

  • * Corresponding author: Xinyu Tu

    * Corresponding author: Xinyu Tu 
The first author is partially supported by the China Scholarship Council (201706050065). The second author is partially supported by National Natural Science Foundation of China (Grant Nos: 11771062, 11371384, 11571062), the Basic and Advanced Research Project of CQCSTC (Grant No: cstc2015jcyjBX0007). Fundamental Research Funds for the Central Universities (Grant Nos. 10611CDJXZ238826). The third author is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 11526042). The fourth author is partially supported by Chongqing Scientific & Technological Talents Program (Grant No. KJXX2017006).
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider a chemotaxis-competition system of parabolic-elliptic-parabolic-elliptic type

    $\begin{eqnarray*}\label{1}\left\{\begin{array}{llll}u_t = Δ u-χ_{1}\nabla·(u\nabla v)+μ_{1}u(1-u-a_{1}w), &x∈ Ω, ~~~t>0, \\0 = Δ v-v+w, &x∈Ω, ~~~t>0, \\w_t = Δ w-χ_{2}\nabla·(w\nabla z)+μ_{2}w(1-a_{2}u-w), &x∈ Ω, ~~~ t>0, \\0 = Δ z-z+u, &x∈Ω, ~~~t>0, \\\end{array}\right.\end{eqnarray*}$

    with homogeneous Neumann boundary conditions in an arbitrary smooth bounded domain $Ω\subset R^n$, $n≥2$, where $χ_{i}$, $μ_{i}$ and $a_{i}$ $(i = 1, 2)$ are positive constants. It is shown that for any positive parameters $χ_{i}$, $μ_{i}$, $a_{i}$ $(i = 1, 2)$ and any suitably regular initial data $(u_{0}, w_{0})$, this system possesses a global bounded classical solution provided that $\frac{χ_{i}}{μ_{i}}$ are small. Moreover, when $a_{1}, a_{2}∈ (0, 1)$ and the parameters $μ_{1}$ and $μ_{2}$ are sufficiently large, it is proved that the global solution $(u, v, w, z)$ of this system exponentially approaches to the steady state $\left(\frac{1-a_{1}}{1-a_{1}a_{2}}, \frac{1-a_{2}}{1-a_{1}a_{2}}, \frac{1-a_{2}}{1-a_{1}a_{2}}, \frac{1-a_{1}}{1-a_{1}a_{2}}\right)$ in the norm of $L^{∞}(Ω)$ as $t\to ∞$; If $a_{1}≥1>a_{2}>0$ and $μ_{2}$ is sufficiently large, the solution of the system converges to the constant stationary solution $\left(0, 1, 1, 0\right)$ as time tends to infinity, and the convergence rates can be calculated accurately.

    Mathematics Subject Classification: Primary: 35B35, 35B34; Secondary: 35K55, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.
    [2] T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876.  doi: 10.1093/imamat/hxw036.
    [3] J. CaoW. Wang and H. Yu, Asymptotic behavior of solutions to two-dimensional chemotaxis system with logistic source and singular sensitivity, J. Math. Anal. Appl., 436 (2016), 382-392.  doi: 10.1016/j.jmaa.2015.11.058.
    [4] E. E. Espejo and T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34.  doi: 10.1016/j.aml.2014.04.007.
    [5] A. Friedman, Partoal Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que-London, 1969.
    [6] K. FujieA. ItoM. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169.  doi: 10.3934/dcds.2016.36.151.
    [7] C. GaiQ. Wang and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 1239-1284.  doi: 10.3934/dcds.2015.35.1239.
    [8] M. HirataS. KurimaM. Mizukami and T. Yokota, Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differential Equations, 263 (2017), 470-490.  doi: 10.1016/j.jde.2017.02.045.
    [9] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [10] D. Horstmann, Generaizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.
    [11] M. W. Htwe and Y.F Wang, Boundedness in a full parabolic two-species chemotaxis system, C. R. Acad. Sci. Ser. I., 355 (2017), 80-83.  doi: 10.1016/j.crma.2016.10.024.
    [12] J. HuQ. WangJ. Yang and L. Zhang, Globale existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8 (2015), 777-807.  doi: 10.3934/krm.2015.8.777.
    [13] H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.  doi: 10.1016/j.jmaa.2014.09.049.
    [14] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [15] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.  doi: 10.1016/j.jmaa.2008.01.005.
    [16] J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.
    [17] Y. Li, Global bounded solutions and their asymptotic properties under small initial data condition in a two-dimensional chemotaxis system for two species, J. Math. Anal. Appl., 429 (2015), 1291-1304.  doi: 10.1016/j.jmaa.2015.04.052.
    [18] K. Lin and C. L. Mu, Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2233-2260.  doi: 10.3934/dcdsb.2017094.
    [19] K. LinC. L. Mu and L. C. Wang, Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38 (2015), 5085-5096.  doi: 10.1002/mma.3429.
    [20] K. LinC. L. Mu and L. C. Wang, Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124.  doi: 10.1016/j.jmaa.2014.12.052.
    [21] J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31-41.  doi: 10.1080/17513758.2011.571722.
    [22] P. LiuJ. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.
    [23] M. Mizukami, Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic-parabolic-elliptic type, Math. Methods Appl. Sci., 41 (2018), 234-249.  doi: 10.1002/mma.4607.
    [24] M. Mizukami, Remarks on smallness of chemotactic effect for asymptotic stability in a two-species chemotaxis system, AIMS Mathematics, 1 (2016), 156-164. 
    [25] M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.
    [26] M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a twospecies chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.  doi: 10.1016/j.jde.2016.05.008.
    [27] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.
    [28] M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.
    [29] M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.
    [30] M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.
    [31] M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.
    [32] K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441-469. 
    [33] K. OsakiT. TsujikawaT. A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Real World Appl., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.
    [34] C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.
    [35] Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.
    [36] Y. S. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.
    [37] J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.
    [38] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. Partial Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.
    [39] Q. WangJ. Yang and L. Zhang, Time periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3547-3574.  doi: 10.3934/dcdsb.2017179.
    [40] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
    [41] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Diff. Eqns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [42] M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.
    [43] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
    [44] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [45] M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-2793.  doi: 10.3934/dcdsb.2017135.
    [46] Q. Zhang and Y. Li, Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.  doi: 10.1007/s00033-013-0383-4.
    [47] Q. Zhang and Y. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014), 47-63.  doi: 10.1016/j.jmaa.2014.03.084.
    [48] J. Zheng, Boundedness in a two-species quasilinear chemotaxis system with two chemicals, Topol. Methods Nonl. Anal., 49 (2017), 463-480. 
    [49] P. Zheng and C. L. Mu, Global boundedness in a two-competing-species chemotaxis system with two chemicals, Acta Appl. Math., 148 (2017), 157-177.  doi: 10.1007/s10440-016-0083-0.
    [50] P. Zheng, C. L. Mu and X. Hu, Persistence property in a two-species chemotaxis system with two signals J. Math. Phys. 58 (2017), 111501, 17pp. doi: 10.1063/1.5010681.
    [51] P. ZhengC. L. Mu and Y. Mi, Global stability in a two-competing-species chemotaxis system with two chemicals, Diff. Integ. Equa., 31 (2018), 547-558. 
  • 加载中
SHARE

Article Metrics

HTML views(2294) PDF downloads(514) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return