This paper is concerned with the regular random dynamics for the reaction-diffusion equation defined on a thin domain and perturbed by rough noise, where the usual Winner process is replaced by a general stochastic process satisfied the basic convergence. A bi-spatial attractor is obtained when the non-initial space is $p$-times Lebesgue space or Sobolev space. The measurability of the solution operator is proved, which leads to the measurability of the attractor in both state spaces. Finally, the upper semi-continuity of attractors under the $p$-norm is established when the narrow domain degenerates onto a lower dimensional set. Both methods of symbolical truncation and spectral decomposition provide all required uniform estimates in both Lebesgue and Sobolev spaces.
Citation: |
[1] | A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643. |
[2] | F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302. doi: 10.12775/TMNA.2001.035. |
[3] | L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. |
[4] | J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178. doi: 10.1016/j.jde.2003.09.004. |
[5] | J. M. Arrieta, A. N. Carvalho, R. P. Silva and M. C. Pereira, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132. doi: 10.1016/j.na.2011.05.006. |
[6] | P. W. Bates, K. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. |
[7] | T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439. |
[8] | T. Caraballo and J. A. Langa, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disrete Contin. Dyn. Syst., 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875. |
[9] | I. Chueshov, Monotone Random Systems Theory and Applications, vol. 1779, Springer Science & Business Media, 2002. doi: 10.1007/b83277. |
[10] | I. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal, 188 (2008), 117-153. doi: 10.1007/s00205-007-0068-2. |
[11] | I. S. Ciuperca, Reaction-Diffusion equations on thin domains with varying order of thinness, J. Differential Equations, 126 (1996), 244-291. doi: 10.1006/jdeq.1996.0051. |
[12] | H. Cui, Y. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. |
[13] | H. Cui and Y. Li, Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises, Appl. Math. Comput., 271 (2015), 777-789. doi: 10.1016/j.amc.2015.09.031. |
[14] | H. Cui, J. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynamics Differential Equations, (2017), 1-26. doi: 10.1007/s10884-017-9617-z. |
[15] | J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219. doi: 10.1090/S0002-9947-1992-1040261-1. |
[16] | J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. |
[17] | J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327. doi: 10.1017/S0308210500028043. |
[18] | D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208. doi: 10.1016/j.jde.2016.10.024. |
[19] | D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602. doi: 10.1016/j.jde.2016.10.024. |
[20] | Y. Li, H. Cui and J. Li, Upper semi-continuity and regularity of random attractors on $p$-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44. doi: 10.1016/j.na.2014.06.013. |
[21] | Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021. |
[22] | Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. |
[23] | Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223. doi: 10.3934/dcdsb.2016.21.1203. |
[24] | Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weakly dissipative $p$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1939-1957. doi: 10.3934/dcdss.2016079. |
[25] | Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Memoirs Amer. Math. Soc., 206 (2010), 1-106. doi: 10.1090/S0065-9266-10-00574-0. |
[26] | Z. Lian, P. Liu and K. Lu, Existence of SRB measures for a class of partially hyperbolic attractors in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 3905-3920. doi: 10.3934/dcds.2017164. |
[27] | M. Prizzi, A remark on reaction-diffusion equations in unbounded domains, Discrete Contin. Dyn. Syst., 9 (2002), 281-286. doi: 10.3934/dcds.2003.9.281. |
[28] | M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differential Equations, 173 (2001), 271-320. doi: 10.1006/jdeq.2000.3917. |
[29] | M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems Ⅱ, Topol. Methods Nonlinear Anal., 19 (2002), 199-219. doi: 10.12775/TMNA.2002.010. |
[30] | G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. Ⅰ. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568. doi: 10.2307/2152776. |
[31] | B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. |
[32] | B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. |
[33] | M. Wang and Y. Tang, Attractors in $H^2$ and $L^{2p-2}$ for reaction-diffusion equations on unbounded domains, Commun. Pure Appl. Anal., 12 (2013), 1111-1121. doi: 10.3934/cpaa.2013.12.1111. |
[34] | J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic $p$-Laplacian equations on $R^n$, Math. Methods Appl. Sci., 40 (2017), 4863-4879. doi: 10.1002/mma.4353. |
[35] | J. Yin, Y. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207. doi: 10.1016/j.jmaa.2017.01.064. |
[36] | J. Yin, Y. Li and H. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in $L^q$, Appl. Math. Comput., 225 (2013), 526-540. doi: 10.1016/j.amc.2013.09.051. |
[37] | W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2707-2721. doi: 10.1016/j.cnsns.2013.03.012. |
[38] | W. Zhao and Y. Li, ($L^2$, $L^p$)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. |
[39] | W. Zhao and Y. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Diff. Equ., 11 (2014), 269-298. doi: 10.4310/DPDE.2014.v11.n3.a4. |