July  2018, 38(7): 3663-3685. doi: 10.3934/dcds.2018158

Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: liyr@swu.edu.cn(Yangrong Li)

Received  November 2017 Published  April 2018

Fund Project: This work was supported by the Natural Science Foundation of China Grant 11571283

This paper is concerned with the regular random dynamics for the reaction-diffusion equation defined on a thin domain and perturbed by rough noise, where the usual Winner process is replaced by a general stochastic process satisfied the basic convergence. A bi-spatial attractor is obtained when the non-initial space is $p$-times Lebesgue space or Sobolev space. The measurability of the solution operator is proved, which leads to the measurability of the attractor in both state spaces. Finally, the upper semi-continuity of attractors under the $p$-norm is established when the narrow domain degenerates onto a lower dimensional set. Both methods of symbolical truncation and spectral decomposition provide all required uniform estimates in both Lebesgue and Sobolev spaces.

Citation: Fuzhi Li, Yangrong Li, Renhai Wang. Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3663-3685. doi: 10.3934/dcds.2018158
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643. Google Scholar

[2]

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302. doi: 10.12775/TMNA.2001.035. Google Scholar

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[4]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178. doi: 10.1016/j.jde.2003.09.004. Google Scholar

[5]

J. M. ArrietaA. N. CarvalhoR. P. Silva and M. C. Pereira, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132. doi: 10.1016/j.na.2011.05.006. Google Scholar

[6]

P. W. BatesK. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439. Google Scholar

[8]

T. Caraballo and J. A. Langa, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disrete Contin. Dyn. Syst., 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875. Google Scholar

[9]

I. Chueshov, Monotone Random Systems Theory and Applications, vol. 1779, Springer Science & Business Media, 2002. doi: 10.1007/b83277. Google Scholar

[10]

I. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal, 188 (2008), 117-153. doi: 10.1007/s00205-007-0068-2. Google Scholar

[11]

I. S. Ciuperca, Reaction-Diffusion equations on thin domains with varying order of thinness, J. Differential Equations, 126 (1996), 244-291. doi: 10.1006/jdeq.1996.0051. Google Scholar

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. Google Scholar

[13]

H. Cui and Y. Li, Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises, Appl. Math. Comput., 271 (2015), 777-789. doi: 10.1016/j.amc.2015.09.031. Google Scholar

[14]

H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynamics Differential Equations, (2017), 1-26. doi: 10.1007/s10884-017-9617-z. Google Scholar

[15]

J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219. doi: 10.1090/S0002-9947-1992-1040261-1. Google Scholar

[16]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. Google Scholar

[17]

J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327. doi: 10.1017/S0308210500028043. Google Scholar

[18]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208. doi: 10.1016/j.jde.2016.10.024. Google Scholar

[19]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602. doi: 10.1016/j.jde.2016.10.024. Google Scholar

[20]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on $p$-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44. doi: 10.1016/j.na.2014.06.013. Google Scholar

[21]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021. Google Scholar

[22]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[23]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223. doi: 10.3934/dcdsb.2016.21.1203. Google Scholar

[24]

Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weakly dissipative $p$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1939-1957. doi: 10.3934/dcdss.2016079. Google Scholar

[25]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Memoirs Amer. Math. Soc., 206 (2010), 1-106. doi: 10.1090/S0065-9266-10-00574-0. Google Scholar

[26]

Z. LianP. Liu and K. Lu, Existence of SRB measures for a class of partially hyperbolic attractors in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 3905-3920. doi: 10.3934/dcds.2017164. Google Scholar

[27]

M. Prizzi, A remark on reaction-diffusion equations in unbounded domains, Discrete Contin. Dyn. Syst., 9 (2002), 281-286. doi: 10.3934/dcds.2003.9.281. Google Scholar

[28]

M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differential Equations, 173 (2001), 271-320. doi: 10.1006/jdeq.2000.3917. Google Scholar

[29]

M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems Ⅱ, Topol. Methods Nonlinear Anal., 19 (2002), 199-219. doi: 10.12775/TMNA.2002.010. Google Scholar

[30]

G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. Ⅰ. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568. doi: 10.2307/2152776. Google Scholar

[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[32]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. Google Scholar

[33]

M. Wang and Y. Tang, Attractors in $H^2$ and $L^{2p-2}$ for reaction-diffusion equations on unbounded domains, Commun. Pure Appl. Anal., 12 (2013), 1111-1121. doi: 10.3934/cpaa.2013.12.1111. Google Scholar

[34]

J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic $p$-Laplacian equations on $R^n$, Math. Methods Appl. Sci., 40 (2017), 4863-4879. doi: 10.1002/mma.4353. Google Scholar

[35]

J. YinY. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207. doi: 10.1016/j.jmaa.2017.01.064. Google Scholar

[36]

J. YinY. Li and H. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in $L^q$, Appl. Math. Comput., 225 (2013), 526-540. doi: 10.1016/j.amc.2013.09.051. Google Scholar

[37]

W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2707-2721. doi: 10.1016/j.cnsns.2013.03.012. Google Scholar

[38]

W. Zhao and Y. Li, ($L^2$, $L^p$)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. Google Scholar

[39]

W. Zhao and Y. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Diff. Equ., 11 (2014), 269-298. doi: 10.4310/DPDE.2014.v11.n3.a4. Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643. Google Scholar

[2]

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302. doi: 10.12775/TMNA.2001.035. Google Scholar

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[4]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178. doi: 10.1016/j.jde.2003.09.004. Google Scholar

[5]

J. M. ArrietaA. N. CarvalhoR. P. Silva and M. C. Pereira, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132. doi: 10.1016/j.na.2011.05.006. Google Scholar

[6]

P. W. BatesK. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439. Google Scholar

[8]

T. Caraballo and J. A. Langa, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disrete Contin. Dyn. Syst., 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875. Google Scholar

[9]

I. Chueshov, Monotone Random Systems Theory and Applications, vol. 1779, Springer Science & Business Media, 2002. doi: 10.1007/b83277. Google Scholar

[10]

I. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal, 188 (2008), 117-153. doi: 10.1007/s00205-007-0068-2. Google Scholar

[11]

I. S. Ciuperca, Reaction-Diffusion equations on thin domains with varying order of thinness, J. Differential Equations, 126 (1996), 244-291. doi: 10.1006/jdeq.1996.0051. Google Scholar

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. Google Scholar

[13]

H. Cui and Y. Li, Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises, Appl. Math. Comput., 271 (2015), 777-789. doi: 10.1016/j.amc.2015.09.031. Google Scholar

[14]

H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynamics Differential Equations, (2017), 1-26. doi: 10.1007/s10884-017-9617-z. Google Scholar

[15]

J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219. doi: 10.1090/S0002-9947-1992-1040261-1. Google Scholar

[16]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. Google Scholar

[17]

J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327. doi: 10.1017/S0308210500028043. Google Scholar

[18]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208. doi: 10.1016/j.jde.2016.10.024. Google Scholar

[19]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602. doi: 10.1016/j.jde.2016.10.024. Google Scholar

[20]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on $p$-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44. doi: 10.1016/j.na.2014.06.013. Google Scholar

[21]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021. Google Scholar

[22]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[23]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223. doi: 10.3934/dcdsb.2016.21.1203. Google Scholar

[24]

Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weakly dissipative $p$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1939-1957. doi: 10.3934/dcdss.2016079. Google Scholar

[25]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Memoirs Amer. Math. Soc., 206 (2010), 1-106. doi: 10.1090/S0065-9266-10-00574-0. Google Scholar

[26]

Z. LianP. Liu and K. Lu, Existence of SRB measures for a class of partially hyperbolic attractors in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 3905-3920. doi: 10.3934/dcds.2017164. Google Scholar

[27]

M. Prizzi, A remark on reaction-diffusion equations in unbounded domains, Discrete Contin. Dyn. Syst., 9 (2002), 281-286. doi: 10.3934/dcds.2003.9.281. Google Scholar

[28]

M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differential Equations, 173 (2001), 271-320. doi: 10.1006/jdeq.2000.3917. Google Scholar

[29]

M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems Ⅱ, Topol. Methods Nonlinear Anal., 19 (2002), 199-219. doi: 10.12775/TMNA.2002.010. Google Scholar

[30]

G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. Ⅰ. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568. doi: 10.2307/2152776. Google Scholar

[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[32]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. Google Scholar

[33]

M. Wang and Y. Tang, Attractors in $H^2$ and $L^{2p-2}$ for reaction-diffusion equations on unbounded domains, Commun. Pure Appl. Anal., 12 (2013), 1111-1121. doi: 10.3934/cpaa.2013.12.1111. Google Scholar

[34]

J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic $p$-Laplacian equations on $R^n$, Math. Methods Appl. Sci., 40 (2017), 4863-4879. doi: 10.1002/mma.4353. Google Scholar

[35]

J. YinY. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207. doi: 10.1016/j.jmaa.2017.01.064. Google Scholar

[36]

J. YinY. Li and H. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in $L^q$, Appl. Math. Comput., 225 (2013), 526-540. doi: 10.1016/j.amc.2013.09.051. Google Scholar

[37]

W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2707-2721. doi: 10.1016/j.cnsns.2013.03.012. Google Scholar

[38]

W. Zhao and Y. Li, ($L^2$, $L^p$)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. Google Scholar

[39]

W. Zhao and Y. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Diff. Equ., 11 (2014), 269-298. doi: 10.4310/DPDE.2014.v11.n3.a4. Google Scholar

[1]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[2]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[3]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[4]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009

[5]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[6]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[7]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[8]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[9]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[10]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151

[11]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[12]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[13]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[14]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[15]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[16]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[17]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[18]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[19]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[20]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (77)
  • HTML views (173)
  • Cited by (0)

Other articles
by authors

[Back to Top]