August  2018, 38(8): 3735-3763. doi: 10.3934/dcds.2018162

Degenerate lower dimensional invariant tori in reversible system

School of Mathematical Sciences, Peking University, Beijing 100871, China

* Corresponding author: Shengqing Hu

Received  June 2017 Revised  January 2018 Published  May 2018

Fund Project: The second author is supported by NNSF grant 11231001.

In this paper, we are concerned with the existence of lower dimensional invariant tori in nearly integrable reversible systems. By KAM method, we prove that under some reasonable assumptions, there are many so-called degenerate lower dimensional invariant tori, that is one of normal frequencies is zero.

Citation: Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162
References:
[1]

V. I. Arnold, Reversible systems, in Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), Harwood Academic Publ., Chur, 1984, 1161–1174.  Google Scholar

[2]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Order Amidst Chaos (Lecture notes in Mathematics, 1645). Springer-Verlag, Berlin, 1996.  Google Scholar

[3]

H. W. Broer and G. B. Huitema, Unfolding of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations, 7 (1995), 191-212.  doi: 10.1007/BF02218818.  Google Scholar

[4]

L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm, Suo. Pisa, 15 (1988), 115-147.   Google Scholar

[5]

S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.  doi: 10.1016/0022-0396(74)90086-2.  Google Scholar

[6]

B. Liu, On lower dimensional invariant tori in reversible system, J. Differential Equations, 176 (2001), 158-194.  doi: 10.1006/jdeq.2000.3960.  Google Scholar

[7]

J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[8]

M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., Vol. 1211, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0075877.  Google Scholar

[9]

M. B. Sevryuk, Invariant $m$-dimensional tori of reversible systems with a phase space of dimension greater than $2m$, J. Soviet Math., 51 (1990), 2374-2386.  doi: 10.1007/BF01094996.  Google Scholar

[10]

M. B. Sevryuk, New results in the reversible KAM theory, in Seminar on Dynamical Systems, (Eds. S. B. Kuksin, V. F. Lazutkin and J. Poschel. ) Birkhauser, Basel, 12 (1994), 184–199. doi: 10.1007/978-3-0348-7515-8_14.  Google Scholar

[11]

M. B. Sevryuk, The iteration-approximation decoupling in the reversible KAM theory, Chaos, 5 (1995), 552-565.  doi: 10.1063/1.166125.  Google Scholar

[12]

M. B. Sevryuk, Partial preservation frequencies in KAM theory, Nonlinearity, 19 (2006), 1099-1140.  doi: 10.1088/0951-7715/19/5/005.  Google Scholar

[13]

X. C. WangJ. X. Xu and D. F. Zhang, Degenerate lower dimensional tori in reversible system, J. Math. Anal. Appl., 387 (2012), 776-790.  doi: 10.1016/j.jmaa.2011.09.030.  Google Scholar

[14]

X. C. WangJ. X. Xu and D. F. Zhang, On the persistence of lower-dimensional tori in reversible system, Ergodic Theory and Dynamical Systems, 35 (2015), 2311-2333.  doi: 10.1017/etds.2014.34.  Google Scholar

[15]

J. X. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations., 250 (2011), 551-571.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[16]

J. G. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian system, Commun. Math. Phys., 192 (1998), 145-168.  doi: 10.1007/s002200050294.  Google Scholar

[17]

J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations., 152 (1999), 1-29.  doi: 10.1006/jdeq.1998.3515.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Reversible systems, in Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), Harwood Academic Publ., Chur, 1984, 1161–1174.  Google Scholar

[2]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Order Amidst Chaos (Lecture notes in Mathematics, 1645). Springer-Verlag, Berlin, 1996.  Google Scholar

[3]

H. W. Broer and G. B. Huitema, Unfolding of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations, 7 (1995), 191-212.  doi: 10.1007/BF02218818.  Google Scholar

[4]

L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm, Suo. Pisa, 15 (1988), 115-147.   Google Scholar

[5]

S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.  doi: 10.1016/0022-0396(74)90086-2.  Google Scholar

[6]

B. Liu, On lower dimensional invariant tori in reversible system, J. Differential Equations, 176 (2001), 158-194.  doi: 10.1006/jdeq.2000.3960.  Google Scholar

[7]

J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[8]

M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., Vol. 1211, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0075877.  Google Scholar

[9]

M. B. Sevryuk, Invariant $m$-dimensional tori of reversible systems with a phase space of dimension greater than $2m$, J. Soviet Math., 51 (1990), 2374-2386.  doi: 10.1007/BF01094996.  Google Scholar

[10]

M. B. Sevryuk, New results in the reversible KAM theory, in Seminar on Dynamical Systems, (Eds. S. B. Kuksin, V. F. Lazutkin and J. Poschel. ) Birkhauser, Basel, 12 (1994), 184–199. doi: 10.1007/978-3-0348-7515-8_14.  Google Scholar

[11]

M. B. Sevryuk, The iteration-approximation decoupling in the reversible KAM theory, Chaos, 5 (1995), 552-565.  doi: 10.1063/1.166125.  Google Scholar

[12]

M. B. Sevryuk, Partial preservation frequencies in KAM theory, Nonlinearity, 19 (2006), 1099-1140.  doi: 10.1088/0951-7715/19/5/005.  Google Scholar

[13]

X. C. WangJ. X. Xu and D. F. Zhang, Degenerate lower dimensional tori in reversible system, J. Math. Anal. Appl., 387 (2012), 776-790.  doi: 10.1016/j.jmaa.2011.09.030.  Google Scholar

[14]

X. C. WangJ. X. Xu and D. F. Zhang, On the persistence of lower-dimensional tori in reversible system, Ergodic Theory and Dynamical Systems, 35 (2015), 2311-2333.  doi: 10.1017/etds.2014.34.  Google Scholar

[15]

J. X. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations., 250 (2011), 551-571.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[16]

J. G. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian system, Commun. Math. Phys., 192 (1998), 145-168.  doi: 10.1007/s002200050294.  Google Scholar

[17]

J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations., 152 (1999), 1-29.  doi: 10.1006/jdeq.1998.3515.  Google Scholar

[1]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[4]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[5]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[6]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[7]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[8]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[13]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[14]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[15]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[16]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[17]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[19]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (171)
  • HTML views (165)
  • Cited by (1)

Other articles
by authors

[Back to Top]