August  2018, 38(8): 3735-3763. doi: 10.3934/dcds.2018162

Degenerate lower dimensional invariant tori in reversible system

School of Mathematical Sciences, Peking University, Beijing 100871, China

* Corresponding author: Shengqing Hu

Received  June 2017 Revised  January 2018 Published  May 2018

Fund Project: The second author is supported by NNSF grant 11231001

In this paper, we are concerned with the existence of lower dimensional invariant tori in nearly integrable reversible systems. By KAM method, we prove that under some reasonable assumptions, there are many so-called degenerate lower dimensional invariant tori, that is one of normal frequencies is zero.

Citation: Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162
References:
[1]

V. I. Arnold, Reversible systems, in Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), Harwood Academic Publ., Chur, 1984, 1161–1174.  Google Scholar

[2]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Order Amidst Chaos (Lecture notes in Mathematics, 1645). Springer-Verlag, Berlin, 1996.  Google Scholar

[3]

H. W. Broer and G. B. Huitema, Unfolding of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations, 7 (1995), 191-212.  doi: 10.1007/BF02218818.  Google Scholar

[4]

L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm, Suo. Pisa, 15 (1988), 115-147.   Google Scholar

[5]

S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.  doi: 10.1016/0022-0396(74)90086-2.  Google Scholar

[6]

B. Liu, On lower dimensional invariant tori in reversible system, J. Differential Equations, 176 (2001), 158-194.  doi: 10.1006/jdeq.2000.3960.  Google Scholar

[7]

J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[8]

M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., Vol. 1211, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0075877.  Google Scholar

[9]

M. B. Sevryuk, Invariant $m$-dimensional tori of reversible systems with a phase space of dimension greater than $2m$, J. Soviet Math., 51 (1990), 2374-2386.  doi: 10.1007/BF01094996.  Google Scholar

[10]

M. B. Sevryuk, New results in the reversible KAM theory, in Seminar on Dynamical Systems, (Eds. S. B. Kuksin, V. F. Lazutkin and J. Poschel. ) Birkhauser, Basel, 12 (1994), 184–199. doi: 10.1007/978-3-0348-7515-8_14.  Google Scholar

[11]

M. B. Sevryuk, The iteration-approximation decoupling in the reversible KAM theory, Chaos, 5 (1995), 552-565.  doi: 10.1063/1.166125.  Google Scholar

[12]

M. B. Sevryuk, Partial preservation frequencies in KAM theory, Nonlinearity, 19 (2006), 1099-1140.  doi: 10.1088/0951-7715/19/5/005.  Google Scholar

[13]

X. C. WangJ. X. Xu and D. F. Zhang, Degenerate lower dimensional tori in reversible system, J. Math. Anal. Appl., 387 (2012), 776-790.  doi: 10.1016/j.jmaa.2011.09.030.  Google Scholar

[14]

X. C. WangJ. X. Xu and D. F. Zhang, On the persistence of lower-dimensional tori in reversible system, Ergodic Theory and Dynamical Systems, 35 (2015), 2311-2333.  doi: 10.1017/etds.2014.34.  Google Scholar

[15]

J. X. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations., 250 (2011), 551-571.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[16]

J. G. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian system, Commun. Math. Phys., 192 (1998), 145-168.  doi: 10.1007/s002200050294.  Google Scholar

[17]

J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations., 152 (1999), 1-29.  doi: 10.1006/jdeq.1998.3515.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Reversible systems, in Nonlinear and Turbulent Processes in Physics, Vol. 3 (Kiev, 1983), Harwood Academic Publ., Chur, 1984, 1161–1174.  Google Scholar

[2]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Order Amidst Chaos (Lecture notes in Mathematics, 1645). Springer-Verlag, Berlin, 1996.  Google Scholar

[3]

H. W. Broer and G. B. Huitema, Unfolding of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations, 7 (1995), 191-212.  doi: 10.1007/BF02218818.  Google Scholar

[4]

L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm, Suo. Pisa, 15 (1988), 115-147.   Google Scholar

[5]

S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.  doi: 10.1016/0022-0396(74)90086-2.  Google Scholar

[6]

B. Liu, On lower dimensional invariant tori in reversible system, J. Differential Equations, 176 (2001), 158-194.  doi: 10.1006/jdeq.2000.3960.  Google Scholar

[7]

J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[8]

M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., Vol. 1211, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0075877.  Google Scholar

[9]

M. B. Sevryuk, Invariant $m$-dimensional tori of reversible systems with a phase space of dimension greater than $2m$, J. Soviet Math., 51 (1990), 2374-2386.  doi: 10.1007/BF01094996.  Google Scholar

[10]

M. B. Sevryuk, New results in the reversible KAM theory, in Seminar on Dynamical Systems, (Eds. S. B. Kuksin, V. F. Lazutkin and J. Poschel. ) Birkhauser, Basel, 12 (1994), 184–199. doi: 10.1007/978-3-0348-7515-8_14.  Google Scholar

[11]

M. B. Sevryuk, The iteration-approximation decoupling in the reversible KAM theory, Chaos, 5 (1995), 552-565.  doi: 10.1063/1.166125.  Google Scholar

[12]

M. B. Sevryuk, Partial preservation frequencies in KAM theory, Nonlinearity, 19 (2006), 1099-1140.  doi: 10.1088/0951-7715/19/5/005.  Google Scholar

[13]

X. C. WangJ. X. Xu and D. F. Zhang, Degenerate lower dimensional tori in reversible system, J. Math. Anal. Appl., 387 (2012), 776-790.  doi: 10.1016/j.jmaa.2011.09.030.  Google Scholar

[14]

X. C. WangJ. X. Xu and D. F. Zhang, On the persistence of lower-dimensional tori in reversible system, Ergodic Theory and Dynamical Systems, 35 (2015), 2311-2333.  doi: 10.1017/etds.2014.34.  Google Scholar

[15]

J. X. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations., 250 (2011), 551-571.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[16]

J. G. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian system, Commun. Math. Phys., 192 (1998), 145-168.  doi: 10.1007/s002200050294.  Google Scholar

[17]

J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations., 152 (1999), 1-29.  doi: 10.1006/jdeq.1998.3515.  Google Scholar

[1]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[2]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1237-1249. doi: 10.3934/dcdsb.2010.14.1237

[3]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1677-1692. doi: 10.3934/dcds.2016.36.1677

[4]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[5]

Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701

[6]

Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683

[7]

Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086

[8]

Dongfeng Zhang, Junxiang Xu. On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 635-655. doi: 10.3934/dcds.2006.16.635

[9]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[10]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[11]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[12]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[13]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[14]

Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64

[15]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[16]

Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171

[17]

Paul H. Rabinowitz. On a class of reversible elliptic systems. Networks & Heterogeneous Media, 2012, 7 (4) : 927-939. doi: 10.3934/nhm.2012.7.927

[18]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[19]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[20]

Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (109)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]