
-
Previous Article
Impulsive control of conservative periodic equations and systems: Variational approach
- DCDS Home
- This Issue
-
Next Article
Degenerate lower dimensional invariant tori in reversible system
Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction
1. | Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040, Vienna, Austria |
2. | Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria |
In this paper we study the long-time behavior of a nonlocal Cahn-Hilliard system with singular potential, degenerate mobility, and a reaction term. In particular, we prove the existence of a global attractor with finite fractal dimension, the existence of an exponential attractor, and convergence to equilibria for two physically relevant classes of reaction terms.
References:
[1] |
H. Abels and M. Wilke,
Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176-3193.
doi: 10.1016/j.na.2006.10.002. |
[2] |
G. Alberti and G. Bellettini,
A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math., 9 (1998), 261-284.
doi: 10.1017/S0956792598003453. |
[3] |
M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A, 41 (1990), p6763. Google Scholar |
[4] |
P. W. Bates and J. Han,
The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311 (2005), 289-312.
doi: 10.1016/j.jmaa.2005.02.041. |
[5] |
A. L. Bertozzi, S. Esedoḡlu and A. Gillette,
Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007), 285-291.
doi: 10.1109/TIP.2006.887728. |
[6] |
J. W. Cahn,
On spinodal decomposition, Acta Metall., 9 (1961), 795-801.
doi: 10.1002/9781118788295.ch11. |
[7] |
J. W. Cahn and J. E. Hilliard,
Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1002/9781118788295.ch4. |
[8] |
L. Cherfils, H. Fakih and A. Miranville,
Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015), 105-125.
doi: 10.3934/ipi.2015.9.105. |
[9] |
L. Cherfils, H. Fakih and A. Miranville,
On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015), 1123-1140.
doi: 10.1137/140985627. |
[10] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[11] |
L. Cherfils, A. Miranville and S. Zelik,
On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013. |
[12] |
F. Della Porta and M. Grasselli, Convective nonlocal Cahn-Hilliard equations with reaction terms, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1529–1553, arXiv: math/0605406.
doi: 10.3934/dcdsb.2015.20.1529. |
[13] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci., 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[14] |
C. M. Elliott and H. Garcke,
On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.
doi: 10.1137/S0036141094267662. |
[15] |
L. C. Evans,
Partial Differential Equations, American Mathematical Society, New York, 1998. |
[16] |
H. Fakih,
A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptot. Anal., 94 (2015), 71-104.
doi: 10.3233/ASY-151306. |
[17] |
E. Feireisl, F. Issard-Roch and H. Petzeltová,
A non-smooth version of the Lojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.
doi: 10.1016/j.jde.2003.10.026. |
[18] |
S. Frigeri and M. Grasselli,
Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Dynam. Differential Equations, 24 (2012), 827-856.
doi: 10.1007/s10884-012-9272-3. |
[19] |
S. Frigeri, M. Grasselli and E. Rocca,
A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility, Nonlinearity, 28 (2015), 1257-1293.
doi: 10.1088/0951-7715/28/5/1257. |
[20] |
H. Gajewski and K. Zacharias,
On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.
doi: 10.1016/S0022-247X(02)00425-0. |
[21] |
C. G. Gal and M. Grasselli,
Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013. |
[22] |
C. G. Gal and M. Grasselli,
Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 34 (2014), 145-179.
doi: 10.3934/dcds.2014.34.145. |
[23] |
H. Garcke, B. Nestler and B. Stoth,
On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Phys. D, 115 (1998), 87-108.
doi: 10.1016/S0167-2789(97)00227-3. |
[24] |
H. Garcke, M. Rumpf and U. Weikard,
The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies, Interfaces Free Bound., 3 (2001), 101-118.
doi: 10.4171/IFB/34. |
[25] |
G. Giacomin and J. L. Lebowitz,
Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, J. Stat. Phys, 87 (1997), 37-61.
doi: 10.1007/BF02181479. |
[26] |
Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise,
Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
doi: 10.1016/j.jcp.2014.08.001. |
[27] |
E. Khain and L. M. Sander, Generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129.
doi: 10.1103/PhysRevE.77.051129. |
[28] |
N. Q. Le,
A Gamma-convergence approach to the Cahn-Hilliard equation, Calc. Var. Partial Differential Equations, 32 (2008), 499-522.
doi: 10.1007/s00526-007-0150-5. |
[29] |
M. Liero and S. Reichelt, Homogenization of Cahn-Hilliard-type equations via evolutionary Γ-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 6, 31 pp.
doi: 10.1007/s00030-018-0495-9. |
[30] |
S. Londen and H. Petzeltová,
Convergence of solutions of a non-local phase-field system, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 653-670.
doi: 10.3934/dcdss.2011.4.653. |
[31] |
S. Londen and H. Petzeltová,
Regularity and separation from potential barriers for a non-local phase-field system, J. Math. Anal. Appl., 379 (2011), 724-735.
doi: 10.1016/j.jmaa.2011.02.003. |
[32] |
S. Melchionna and E. Rocca,
On a nonlocal Cahn-Hilliard equation with a reaction term, Adv. Math. Sci. Appl., 24 (2014), 461-497.
|
[33] |
A. Miranville,
Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput., 1 (2011), 523-536.
|
[34] |
L. Modica and S. Mortola,
Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. B (5), 14 (1977), 285-299.
|
[35] |
L. Nirenberg, On elliptic partial differential equations, in Il Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali), Springer, (2011), 1–48.
doi: 10.1007/978-3-642-10926-3_1. |
[36] |
J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001.
doi: 10.1007/978-94-010-0732-0. |
show all references
References:
[1] |
H. Abels and M. Wilke,
Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176-3193.
doi: 10.1016/j.na.2006.10.002. |
[2] |
G. Alberti and G. Bellettini,
A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math., 9 (1998), 261-284.
doi: 10.1017/S0956792598003453. |
[3] |
M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A, 41 (1990), p6763. Google Scholar |
[4] |
P. W. Bates and J. Han,
The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311 (2005), 289-312.
doi: 10.1016/j.jmaa.2005.02.041. |
[5] |
A. L. Bertozzi, S. Esedoḡlu and A. Gillette,
Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007), 285-291.
doi: 10.1109/TIP.2006.887728. |
[6] |
J. W. Cahn,
On spinodal decomposition, Acta Metall., 9 (1961), 795-801.
doi: 10.1002/9781118788295.ch11. |
[7] |
J. W. Cahn and J. E. Hilliard,
Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1002/9781118788295.ch4. |
[8] |
L. Cherfils, H. Fakih and A. Miranville,
Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015), 105-125.
doi: 10.3934/ipi.2015.9.105. |
[9] |
L. Cherfils, H. Fakih and A. Miranville,
On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015), 1123-1140.
doi: 10.1137/140985627. |
[10] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[11] |
L. Cherfils, A. Miranville and S. Zelik,
On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013. |
[12] |
F. Della Porta and M. Grasselli, Convective nonlocal Cahn-Hilliard equations with reaction terms, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1529–1553, arXiv: math/0605406.
doi: 10.3934/dcdsb.2015.20.1529. |
[13] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci., 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[14] |
C. M. Elliott and H. Garcke,
On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.
doi: 10.1137/S0036141094267662. |
[15] |
L. C. Evans,
Partial Differential Equations, American Mathematical Society, New York, 1998. |
[16] |
H. Fakih,
A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptot. Anal., 94 (2015), 71-104.
doi: 10.3233/ASY-151306. |
[17] |
E. Feireisl, F. Issard-Roch and H. Petzeltová,
A non-smooth version of the Lojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.
doi: 10.1016/j.jde.2003.10.026. |
[18] |
S. Frigeri and M. Grasselli,
Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Dynam. Differential Equations, 24 (2012), 827-856.
doi: 10.1007/s10884-012-9272-3. |
[19] |
S. Frigeri, M. Grasselli and E. Rocca,
A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility, Nonlinearity, 28 (2015), 1257-1293.
doi: 10.1088/0951-7715/28/5/1257. |
[20] |
H. Gajewski and K. Zacharias,
On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.
doi: 10.1016/S0022-247X(02)00425-0. |
[21] |
C. G. Gal and M. Grasselli,
Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013. |
[22] |
C. G. Gal and M. Grasselli,
Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 34 (2014), 145-179.
doi: 10.3934/dcds.2014.34.145. |
[23] |
H. Garcke, B. Nestler and B. Stoth,
On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Phys. D, 115 (1998), 87-108.
doi: 10.1016/S0167-2789(97)00227-3. |
[24] |
H. Garcke, M. Rumpf and U. Weikard,
The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies, Interfaces Free Bound., 3 (2001), 101-118.
doi: 10.4171/IFB/34. |
[25] |
G. Giacomin and J. L. Lebowitz,
Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, J. Stat. Phys, 87 (1997), 37-61.
doi: 10.1007/BF02181479. |
[26] |
Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise,
Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
doi: 10.1016/j.jcp.2014.08.001. |
[27] |
E. Khain and L. M. Sander, Generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129.
doi: 10.1103/PhysRevE.77.051129. |
[28] |
N. Q. Le,
A Gamma-convergence approach to the Cahn-Hilliard equation, Calc. Var. Partial Differential Equations, 32 (2008), 499-522.
doi: 10.1007/s00526-007-0150-5. |
[29] |
M. Liero and S. Reichelt, Homogenization of Cahn-Hilliard-type equations via evolutionary Γ-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 6, 31 pp.
doi: 10.1007/s00030-018-0495-9. |
[30] |
S. Londen and H. Petzeltová,
Convergence of solutions of a non-local phase-field system, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 653-670.
doi: 10.3934/dcdss.2011.4.653. |
[31] |
S. Londen and H. Petzeltová,
Regularity and separation from potential barriers for a non-local phase-field system, J. Math. Anal. Appl., 379 (2011), 724-735.
doi: 10.1016/j.jmaa.2011.02.003. |
[32] |
S. Melchionna and E. Rocca,
On a nonlocal Cahn-Hilliard equation with a reaction term, Adv. Math. Sci. Appl., 24 (2014), 461-497.
|
[33] |
A. Miranville,
Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput., 1 (2011), 523-536.
|
[34] |
L. Modica and S. Mortola,
Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. B (5), 14 (1977), 285-299.
|
[35] |
L. Nirenberg, On elliptic partial differential equations, in Il Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali), Springer, (2011), 1–48.
doi: 10.1007/978-3-642-10926-3_1. |
[36] |
J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001.
doi: 10.1007/978-94-010-0732-0. |
[1] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[2] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[3] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[4] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[5] |
Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 |
[6] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 |
[7] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289 |
[8] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[9] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[10] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006 |
[11] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[12] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[13] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[14] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[15] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[16] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[17] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[18] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[19] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[20] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]