Using the variational structure of the second order periodic problems we find an optimal impulsive control which forces the conservative system into a periodic motion. In particular, our main results concern the system of charged planar pendulums with external disturbances and neglected friction. Such a system might serve as a model for coupled micromechanical array.
Citation: |
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976. | |
D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Harlow, Longman, 1993. | |
E. Buks and M. L. Roukes , Electrically tunable collective response in a coupled micromechanical array, J. Microelectromech. Syst., 11 (2002) , 802-807. doi: 10.1109/JMEMS.2002.805056. | |
T. E. Carter , Optimal impulsive space trajectories based on linear equations, J. Optim. Theory Appl., 70 (1991) , 277-297. doi: 10.1007/BF00940627. | |
T. E. Carter , Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynam. Control, 10 (2000) , 219-227. doi: 10.1023/A:1008376427023. | |
P. Drábek and M. Langerová, Quasilinear boundary value problem with impulses: Variational approach to resonance problem, Bound. Value Probl., 2014 (2014), 14pp. doi: 10.1186/1687-2770-2014-64. | |
P. Drábek and M. Langerová , On the second order periodic problem at resonance with impulses, J. Math. Anal. Appl., 428 (2015) , 1339-1353. doi: 10.1016/j.jmaa.2015.03.075. | |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, 2nd edition, Birkhäuser, Springer Basel, 2013. doi: 10.1007/978-3-0348-0387-8. | |
B. S. Kalinin , On oscillations of mathematical pendulum with striking impulse, Differ. Uravn., 7 (1969) , 1267-1274. | |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Cambridge, 1989. doi: 10.1142/0906. | |
X. Liu and A. R. Willms , Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft, Math. Probl. Eng., 2 (1996) , 277-299. doi: 10.1155/S1024123X9600035X. | |
J. Mawhin and M. Willem , Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations, 52 (1984) , 264-287. doi: 10.1016/0022-0396(84)90180-3. | |
J. Mawhin and M. Willem , Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in Nonlinear Analysis and Optimization, Lect. Notes Math., (1984) , 181-192. doi: 10.1007/BFb0101500. | |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. | |
J. J. Nieto and D. O'Regan , Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10 (2009) , 680-690. doi: 10.1016/j.nonrwa.2007.10.022. | |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. doi: 10.1142/9789812798664. | |
Y. Tian and W. Ge , Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51 (2008) , 509-527. doi: 10.1017/S0013091506001532. | |
M. Willem, Oscillations forcées de systémes hamiltoniens, Publications Mathematiques de la Faculté des Sciences de Besancon, Besancon, 1981. | |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer-Verlag Berlin Heidelberg, 2001. |
A model of 2 coupled charged pendulums.
A model of