August  2018, 38(8): 3899-3911. doi: 10.3934/dcds.2018169

Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy

Received  September 2017 Revised  March 2018 Published  May 2018

This paper deals with the prescribed mean curvature equations
$ - {\text{div}}\left( {\frac{{\nabla u}}{{\sqrt {1 \pm |\nabla u{|^2}} }}} \right) = g(u){\text{ }}\;\;\;\;{\text{in }}{\mathbb{R}^N},$
both in the Euclidean case, with the sign "+", and in the Lorentz-Minkowski case, with the sign "-", for N ≥ 1 under the assumption g'(0)>0. We show the existence of oscillating solutions, namely with an unbounded sequence of zeros. Moreover these solutions are periodic, if N = 1, while they are radial symmetric and decay to zero at infinity with their derivatives, if N≥ 2.
Citation: Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169
References:
[1]

A. Azzollini, Ground state solution for a problem with mean curvature operator in Minkowski space, J. Funct. Anal., 266 (2014), 2086-2095.  doi: 10.1016/j.jfa.2013.10.002.  Google Scholar

[2]

A. Azzollini, On a prescribed mean curvature equation in Lorentz-Minkowski space, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1122-1140.  doi: 10.1016/j.matpur.2016.04.003.  Google Scholar

[3]

A. AzzolliniP. d'Avenia and A. Pomponio, Quasilinear elliptic equations in $\mathbb{R}^N$ via variational methods and Orlicz-Sobolev embeddings, Calc. Var. Partial Differential Equations, 49 (2014), 197-213.  doi: 10.1007/s00526-012-0578-0.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

H. BerestyckiP. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb{R}^N$, Indiana Univ. Math. J., 30 (1981), 141-157.  doi: 10.1512/iumj.1981.30.30012.  Google Scholar

[6]

D. BonheureA. Derlet and C. De Coster, Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 259-284.   Google Scholar

[7]

D. BonheureP. d'Avenia and A. Pomponio, On the electrostatic Born-Infeld equation with extended charges, Comm. Math. Phys., 346 (2016), 877-906.  doi: 10.1007/s00220-016-2586-y.  Google Scholar

[8]

M. Born and L. Infeld, Foundations of the new field theory, Nature, 132 (1933), 1004. Google Scholar

[9]

M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. London Ser. A, 144 (1934), 425-451.   Google Scholar

[10]

M. Conti and F. Gazzola, Existence of ground states and free-boundary problems for the prescribed mean-curvature equation, Adv. Differential Equations, 7 (2002), 667-694.   Google Scholar

[11]

C. Corsato, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, Università degli Studi di Trieste, Trieste, 2015. Google Scholar

[12]

M. del Pino and I. Guerra, Ground states of a prescribed mean curvature equation, J. Differential Equations, 241 (2007), 112-129.  doi: 10.1016/j.jde.2007.06.010.  Google Scholar

[13]

G. Evequoz, A dual approach in Orlicz spaces for the nonlinear Helmholtz equation, Z. Angew. Math. Phys., 66 (2015), 2995-3015.  doi: 10.1007/s00033-015-0572-4.  Google Scholar

[14]

G. Evequoz and T. Weth, Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation, Journal of Fixed Point Theory and Applications, 19 (2017), 475-502.  doi: 10.1007/s11784-016-0362-4.  Google Scholar

[15]

G. Evequoz and T. Weth, Real solutions to the nonlinear Helmholtz equation with local nonlinearity, Arch. Ration. Mech. Anal., 211 (2014), 359-388.  doi: 10.1007/s00205-013-0664-2.  Google Scholar

[16]

G. Evequoz and T. Weth, Dual variational methods and nonvanishing for the nonlinear Helmholtz equation, Adv. Math., 280 (2015), 690-728.  doi: 10.1016/j.aim.2015.04.017.  Google Scholar

[17]

D. FortunatoL. Orsina and L. Pisani, Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43 (2002), 5698-5706.  doi: 10.1063/1.1508433.  Google Scholar

[18]

B. FranchiE. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$, Adv. Math., 118 (1996), 177-243.  doi: 10.1006/aima.1996.0021.  Google Scholar

[19]

N. FukagaiM. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbb{R}N$, Funkcial. Ekvac., 49 (2006), 235-267.  doi: 10.1619/fesi.49.235.  Google Scholar

[20]

C. Gui and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations, Methods Appl. Anal., 15 (2008), 285-295.  doi: 10.4310/MAA.2008.v15.n3.a3.  Google Scholar

[21]

T. Kusano and C. A. Swanson, Radial entire solutions of a class of quasilinear elliptic equations, J. Differential Equations, 83 (1990), 379-399.  doi: 10.1016/0022-0396(90)90064-V.  Google Scholar

[22]

R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions for nonlinear Helmholtz Equations Z. Angew. Math. Phys., 68 (2017), Art. 121, 19 pp. doi: 10.1007/s00033-017-0859-8.  Google Scholar

[23]

W.-M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo, 5 (1985), 171-185.   Google Scholar

[24]

W.-M. Ni and J. Serrin, Existence and Non-existence theorems for quasi-linear partial differential equations, The anomalous case, Accad. Naz. Lincei, Convegni Dei Lincei, 77 (1986), 231-257.   Google Scholar

[25]

L. A. Peletier and J. Serrin, Ground states for the prescribed mean curvature equation, Proc. Amer. Math. Soc., 100 (1987), 694-700.  doi: 10.1090/S0002-9939-1987-0894440-8.  Google Scholar

[26]

A. Pomponio and T. Watanabe, Some quasilinear elliptic equations involving multiple $p$-Laplacians, to appear on Indiana Univ. Math. J. Google Scholar

[27]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

show all references

References:
[1]

A. Azzollini, Ground state solution for a problem with mean curvature operator in Minkowski space, J. Funct. Anal., 266 (2014), 2086-2095.  doi: 10.1016/j.jfa.2013.10.002.  Google Scholar

[2]

A. Azzollini, On a prescribed mean curvature equation in Lorentz-Minkowski space, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1122-1140.  doi: 10.1016/j.matpur.2016.04.003.  Google Scholar

[3]

A. AzzolliniP. d'Avenia and A. Pomponio, Quasilinear elliptic equations in $\mathbb{R}^N$ via variational methods and Orlicz-Sobolev embeddings, Calc. Var. Partial Differential Equations, 49 (2014), 197-213.  doi: 10.1007/s00526-012-0578-0.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

H. BerestyckiP. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb{R}^N$, Indiana Univ. Math. J., 30 (1981), 141-157.  doi: 10.1512/iumj.1981.30.30012.  Google Scholar

[6]

D. BonheureA. Derlet and C. De Coster, Infinitely many radial solutions of a mean curvature equation in Lorentz-Minkowski space, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 259-284.   Google Scholar

[7]

D. BonheureP. d'Avenia and A. Pomponio, On the electrostatic Born-Infeld equation with extended charges, Comm. Math. Phys., 346 (2016), 877-906.  doi: 10.1007/s00220-016-2586-y.  Google Scholar

[8]

M. Born and L. Infeld, Foundations of the new field theory, Nature, 132 (1933), 1004. Google Scholar

[9]

M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. London Ser. A, 144 (1934), 425-451.   Google Scholar

[10]

M. Conti and F. Gazzola, Existence of ground states and free-boundary problems for the prescribed mean-curvature equation, Adv. Differential Equations, 7 (2002), 667-694.   Google Scholar

[11]

C. Corsato, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, Università degli Studi di Trieste, Trieste, 2015. Google Scholar

[12]

M. del Pino and I. Guerra, Ground states of a prescribed mean curvature equation, J. Differential Equations, 241 (2007), 112-129.  doi: 10.1016/j.jde.2007.06.010.  Google Scholar

[13]

G. Evequoz, A dual approach in Orlicz spaces for the nonlinear Helmholtz equation, Z. Angew. Math. Phys., 66 (2015), 2995-3015.  doi: 10.1007/s00033-015-0572-4.  Google Scholar

[14]

G. Evequoz and T. Weth, Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation, Journal of Fixed Point Theory and Applications, 19 (2017), 475-502.  doi: 10.1007/s11784-016-0362-4.  Google Scholar

[15]

G. Evequoz and T. Weth, Real solutions to the nonlinear Helmholtz equation with local nonlinearity, Arch. Ration. Mech. Anal., 211 (2014), 359-388.  doi: 10.1007/s00205-013-0664-2.  Google Scholar

[16]

G. Evequoz and T. Weth, Dual variational methods and nonvanishing for the nonlinear Helmholtz equation, Adv. Math., 280 (2015), 690-728.  doi: 10.1016/j.aim.2015.04.017.  Google Scholar

[17]

D. FortunatoL. Orsina and L. Pisani, Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43 (2002), 5698-5706.  doi: 10.1063/1.1508433.  Google Scholar

[18]

B. FranchiE. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$, Adv. Math., 118 (1996), 177-243.  doi: 10.1006/aima.1996.0021.  Google Scholar

[19]

N. FukagaiM. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbb{R}N$, Funkcial. Ekvac., 49 (2006), 235-267.  doi: 10.1619/fesi.49.235.  Google Scholar

[20]

C. Gui and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations, Methods Appl. Anal., 15 (2008), 285-295.  doi: 10.4310/MAA.2008.v15.n3.a3.  Google Scholar

[21]

T. Kusano and C. A. Swanson, Radial entire solutions of a class of quasilinear elliptic equations, J. Differential Equations, 83 (1990), 379-399.  doi: 10.1016/0022-0396(90)90064-V.  Google Scholar

[22]

R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions for nonlinear Helmholtz Equations Z. Angew. Math. Phys., 68 (2017), Art. 121, 19 pp. doi: 10.1007/s00033-017-0859-8.  Google Scholar

[23]

W.-M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo, 5 (1985), 171-185.   Google Scholar

[24]

W.-M. Ni and J. Serrin, Existence and Non-existence theorems for quasi-linear partial differential equations, The anomalous case, Accad. Naz. Lincei, Convegni Dei Lincei, 77 (1986), 231-257.   Google Scholar

[25]

L. A. Peletier and J. Serrin, Ground states for the prescribed mean curvature equation, Proc. Amer. Math. Soc., 100 (1987), 694-700.  doi: 10.1090/S0002-9939-1987-0894440-8.  Google Scholar

[26]

A. Pomponio and T. Watanabe, Some quasilinear elliptic equations involving multiple $p$-Laplacians, to appear on Indiana Univ. Math. J. Google Scholar

[27]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[1]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (97)
  • HTML views (146)
  • Cited by (2)

Other articles
by authors

[Back to Top]