\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation

The first author was partially supported by the Ministry of Economy and Competitiveness of Spain under research projects RYC-2014-15284 and MTM2016-80618-P

Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • The Cauchy problem for a fourth-order Boussinesq-type quasilinear wave equation (QWE-4) of the form

    $u_{tt} = -(|u|^n u)_{xxxx}\;\;\; \mbox{in}\;\;\; \mathbb{R} × \mathbb{R}_+, \;\;\;\mbox{with a fixed exponent} \, \, \, n>0, $

    and bounded smooth initial data, is considered. Self-similar single-point gradient blow-up solutions are studied. It is shown that such singular solutions exist and satisfy the case of the so-called self-similarity of the second type.

    Together with an essential and, often, key use of numerical methods to describe possible types of gradient blow-up, a "homotopy" approach is applied that traces out the behaviour of such singularity patterns as $n \to 0^+$, when the classic linear beam equation occurs

    $u_{tt} = -u_{xxxx}, $

    with simple, better-known and understandable evolution properties.

    Mathematics Subject Classification: 41A60, 35C20, 35G20, 35C06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustrative numerical solutions of the oscillatory function $H(s)$ from (2.8) in the case $n = 1$ and selected $\beta$

    Figure 2.  Shooting the first similarity profile satisfying (5.5), (5.7) for $n = 1$

    Figure 3.  he first similarity profiles satisfying (5.5), (5.7) for $n = 3, 2, 1, 0$ and $n = -0.5$

    Figure 4.  Numerical solution in the $n=0$ case of (3.1) with (3.7) and $\nu=g"'(0)=-1,\alpha=0.5$

  •   P. Álvarez-Caudevilla  and  V. A. Galaktionov , Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011) , 483-537.  doi: 10.1007/s00030-011-0105-6.
      P. Álvarez-Caudevilla , J. D. Evans  and  V. A. Galaktionov , The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013) , 1761-1792.  doi: 10.1007/s00009-013-0263-3.
      P. Álvarez-Caudevilla  and  V. A. Galaktionov , Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015) , 19-35.  doi: 10.1016/j.na.2014.08.002.
      K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985. doi: 10.1007/978-3-662-00547-7.
      J. Eggers  and  M. Fontelos , The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009) , R1-R44.  doi: 10.1088/0951-7715/22/1/R01.
      Yu. V. Egorov , V. A. Galaktionov , V. A. Kondratiev  and  S. I. Pohozaev , Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004) , 1009-1038. 
      J. D. Evans , V. A. Galaktionov  and  J. R. King , Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007) , 1799-1841, 1843-1881.  doi: 10.1088/0951-7715/20/8/003.
      A. Favini , G. R. Goldstein , J. A. Goldstein  and  S. Romanelli , Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007) , 219-235.  doi: 10.1016/j.jmaa.2006.11.058.
      V. A. Galaktionov , On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008) , 173-208.  doi: 10.1007/s10665-007-9146-6.
      V. A. Galaktionov , Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008) , 395-431.  doi: 10.1111/j.1467-9590.2008.00421.x.
      V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635.
      V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146, arXiv: 0901.4279.
      V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632). doi: 10.1017/S0956792509990118.
      V. A. Galaktionov , Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011) , 103-143.  doi: 10.1111/j.1467-9590.2010.00499.x.
      V. A. Galaktionov  and  S. I. Pohozaev , Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008) , 1784-1810.  doi: 10.1134/S0965542508100060.
      V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007.
      M. Inc , New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007) , 1275-1284.  doi: 10.1016/j.chaos.2006.01.083.
      M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.
      A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988.
      M. A. Naimark, Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968.
      M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974.
      Z. Yan , Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003) , 869-880.  doi: 10.1016/S0960-0779(03)00059-6.
      Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust. Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1861) PDF downloads(485) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return