
-
Previous Article
Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space
- DCDS Home
- This Issue
-
Next Article
Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases
Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation
1. | Universidad Carlos Ⅲ de Madrid, Av. Universidad 30, 28911-Leganés, Spain & Instituto de Ciencias Matemáticas, ICMAT, C/Nicolás Cabrera 15, 28049 Madrid, Spain |
2. | Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK |
$u_{tt} = -(|u|^n u)_{xxxx}\;\;\; \mbox{in}\;\;\; \mathbb{R} × \mathbb{R}_+, \;\;\;\mbox{with a fixed exponent} \, \, \, n>0, $ |
$n \to 0^+$ |
$u_{tt} = -u_{xxxx}, $ |
References:
[1] |
P. Álvarez-Caudevilla and V. A. Galaktionov,
Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537.
doi: 10.1007/s00030-011-0105-6. |
[2] |
P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov,
The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013), 1761-1792.
doi: 10.1007/s00009-013-0263-3. |
[3] |
P. Álvarez-Caudevilla and V. A. Galaktionov,
Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015), 19-35.
doi: 10.1016/j.na.2014.08.002. |
[4] |
K. Deimling,
Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985.
doi: 10.1007/978-3-662-00547-7. |
[5] |
J. Eggers and M. Fontelos,
The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44.
doi: 10.1088/0951-7715/22/1/R01. |
[6] |
Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev,
Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038.
|
[7] |
J. D. Evans, V. A. Galaktionov and J. R. King,
Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007), 1799-1841, 1843-1881.
doi: 10.1088/0951-7715/20/8/003. |
[8] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli,
Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235.
doi: 10.1016/j.jmaa.2006.11.058. |
[9] |
V. A. Galaktionov,
On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008), 173-208.
doi: 10.1007/s10665-007-9146-6. |
[10] |
V. A. Galaktionov,
Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008), 395-431.
doi: 10.1111/j.1467-9590.2008.00421.x. |
[11] |
V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635. Google Scholar |
[12] |
V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order
porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146,
arXiv: 0901.4279. |
[13] |
V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations,
European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632).
doi: 10.1017/S0956792509990118. |
[14] |
V. A. Galaktionov,
Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011), 103-143.
doi: 10.1111/j.1467-9590.2010.00499.x. |
[15] |
V. A. Galaktionov and S. I. Pohozaev,
Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008), 1784-1810.
doi: 10.1134/S0965542508100060. |
[16] |
V. A. Galaktionov and S. R. Svirshchevskii,
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007. |
[17] |
M. Inc,
New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007), 1275-1284.
doi: 10.1016/j.chaos.2006.01.083. |
[18] |
M. A. Krasnosel'skii and P. P. Zabreiko,
Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69409-7. |
[19] |
A. S. Markus,
Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988. |
[20] |
M. A. Naimark,
Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968. |
[21] |
M. A. Vainberg and V. A. Trenogin,
Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974. |
[22] |
Z. Yan,
Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003), 869-880.
doi: 10.1016/S0960-0779(03)00059-6. |
[23] |
Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust.
Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35. |
show all references
References:
[1] |
P. Álvarez-Caudevilla and V. A. Galaktionov,
Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537.
doi: 10.1007/s00030-011-0105-6. |
[2] |
P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov,
The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013), 1761-1792.
doi: 10.1007/s00009-013-0263-3. |
[3] |
P. Álvarez-Caudevilla and V. A. Galaktionov,
Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015), 19-35.
doi: 10.1016/j.na.2014.08.002. |
[4] |
K. Deimling,
Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985.
doi: 10.1007/978-3-662-00547-7. |
[5] |
J. Eggers and M. Fontelos,
The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44.
doi: 10.1088/0951-7715/22/1/R01. |
[6] |
Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev,
Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038.
|
[7] |
J. D. Evans, V. A. Galaktionov and J. R. King,
Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007), 1799-1841, 1843-1881.
doi: 10.1088/0951-7715/20/8/003. |
[8] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli,
Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235.
doi: 10.1016/j.jmaa.2006.11.058. |
[9] |
V. A. Galaktionov,
On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008), 173-208.
doi: 10.1007/s10665-007-9146-6. |
[10] |
V. A. Galaktionov,
Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008), 395-431.
doi: 10.1111/j.1467-9590.2008.00421.x. |
[11] |
V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635. Google Scholar |
[12] |
V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order
porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146,
arXiv: 0901.4279. |
[13] |
V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations,
European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632).
doi: 10.1017/S0956792509990118. |
[14] |
V. A. Galaktionov,
Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011), 103-143.
doi: 10.1111/j.1467-9590.2010.00499.x. |
[15] |
V. A. Galaktionov and S. I. Pohozaev,
Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008), 1784-1810.
doi: 10.1134/S0965542508100060. |
[16] |
V. A. Galaktionov and S. R. Svirshchevskii,
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007. |
[17] |
M. Inc,
New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007), 1275-1284.
doi: 10.1016/j.chaos.2006.01.083. |
[18] |
M. A. Krasnosel'skii and P. P. Zabreiko,
Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69409-7. |
[19] |
A. S. Markus,
Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988. |
[20] |
M. A. Naimark,
Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968. |
[21] |
M. A. Vainberg and V. A. Trenogin,
Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974. |
[22] |
Z. Yan,
Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003), 869-880.
doi: 10.1016/S0960-0779(03)00059-6. |
[23] |
Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust.
Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35. |


[1] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[2] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[3] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[4] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[5] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[6] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[7] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[8] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[9] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[10] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[11] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[12] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[13] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[14] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[15] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[16] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[17] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[18] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[19] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[20] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]