The Cauchy problem for a fourth-order Boussinesq-type quasilinear wave equation (QWE-4) of the form
$u_{tt} = -(|u|^n u)_{xxxx}\;\;\; \mbox{in}\;\;\; \mathbb{R} × \mathbb{R}_+, \;\;\;\mbox{with a fixed exponent} \, \, \, n>0, $
and bounded smooth initial data, is considered. Self-similar single-point gradient blow-up solutions are studied. It is shown that such singular solutions exist and satisfy the case of the so-called self-similarity of the second type.
Together with an essential and, often, key use of numerical methods to describe possible types of gradient blow-up, a "homotopy" approach is applied that traces out the behaviour of such singularity patterns as
$u_{tt} = -u_{xxxx}, $
with simple, better-known and understandable evolution properties.
Citation: |
P. Álvarez-Caudevilla and V. A. Galaktionov , Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011) , 483-537. doi: 10.1007/s00030-011-0105-6. | |
P. Álvarez-Caudevilla , J. D. Evans and V. A. Galaktionov , The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013) , 1761-1792. doi: 10.1007/s00009-013-0263-3. | |
P. Álvarez-Caudevilla and V. A. Galaktionov , Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015) , 19-35. doi: 10.1016/j.na.2014.08.002. | |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985. doi: 10.1007/978-3-662-00547-7. | |
J. Eggers and M. Fontelos , The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009) , R1-R44. doi: 10.1088/0951-7715/22/1/R01. | |
Yu. V. Egorov , V. A. Galaktionov , V. A. Kondratiev and S. I. Pohozaev , Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004) , 1009-1038. | |
J. D. Evans , V. A. Galaktionov and J. R. King , Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007) , 1799-1841, 1843-1881. doi: 10.1088/0951-7715/20/8/003. | |
A. Favini , G. R. Goldstein , J. A. Goldstein and S. Romanelli , Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007) , 219-235. doi: 10.1016/j.jmaa.2006.11.058. | |
V. A. Galaktionov , On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008) , 173-208. doi: 10.1007/s10665-007-9146-6. | |
V. A. Galaktionov , Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008) , 395-431. doi: 10.1111/j.1467-9590.2008.00421.x. | |
V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635. | |
V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146, arXiv: 0901.4279. | |
V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632). doi: 10.1017/S0956792509990118. | |
V. A. Galaktionov , Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011) , 103-143. doi: 10.1111/j.1467-9590.2010.00499.x. | |
V. A. Galaktionov and S. I. Pohozaev , Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008) , 1784-1810. doi: 10.1134/S0965542508100060. | |
V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007. | |
M. Inc , New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007) , 1275-1284. doi: 10.1016/j.chaos.2006.01.083. | |
M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7. | |
A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988. | |
M. A. Naimark, Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968. | |
M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974. | |
Z. Yan , Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003) , 869-880. doi: 10.1016/S0960-0779(03)00059-6. | |
Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust. Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35. |
Illustrative numerical solutions of the oscillatory function
Shooting the first similarity profile satisfying (5.5), (5.7) for
he first similarity profiles satisfying (5.5), (5.7) for
Numerical solution in the