• Previous Article
    Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space
  • DCDS Home
  • This Issue
  • Next Article
    Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases
August  2018, 38(8): 3913-3938. doi: 10.3934/dcds.2018170

Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation

1. 

Universidad Carlos Ⅲ de Madrid, Av. Universidad 30, 28911-Leganés, Spain & Instituto de Ciencias Matemáticas, ICMAT, C/Nicolás Cabrera 15, 28049 Madrid, Spain

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Received  September 2017 Revised  February 2018 Published  May 2018

Fund Project: The first author was partially supported by the Ministry of Economy and Competitiveness of Spain under research projects RYC-2014-15284 and MTM2016-80618-P.

The Cauchy problem for a fourth-order Boussinesq-type quasilinear wave equation (QWE-4) of the form
$u_{tt} = -(|u|^n u)_{xxxx}\;\;\; \mbox{in}\;\;\; \mathbb{R} × \mathbb{R}_+, \;\;\;\mbox{with a fixed exponent} \, \, \, n>0, $
and bounded smooth initial data, is considered. Self-similar single-point gradient blow-up solutions are studied. It is shown that such singular solutions exist and satisfy the case of the so-called self-similarity of the second type.
Together with an essential and, often, key use of numerical methods to describe possible types of gradient blow-up, a "homotopy" approach is applied that traces out the behaviour of such singularity patterns as
$n \to 0^+$
, when the classic linear beam equation occurs
$u_{tt} = -u_{xxxx}, $
with simple, better-known and understandable evolution properties.
Citation: Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170
References:
[1]

P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537.  doi: 10.1007/s00030-011-0105-6.  Google Scholar

[2]

P. Álvarez-CaudevillaJ. D. Evans and V. A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013), 1761-1792.  doi: 10.1007/s00009-013-0263-3.  Google Scholar

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015), 19-35.  doi: 10.1016/j.na.2014.08.002.  Google Scholar

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[5]

J. Eggers and M. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44.  doi: 10.1088/0951-7715/22/1/R01.  Google Scholar

[6]

Yu. V. EgorovV. A. GalaktionovV. A. Kondratiev and S. I. Pohozaev, Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038.   Google Scholar

[7]

J. D. EvansV. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007), 1799-1841, 1843-1881.  doi: 10.1088/0951-7715/20/8/003.  Google Scholar

[8]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235.  doi: 10.1016/j.jmaa.2006.11.058.  Google Scholar

[9]

V. A. Galaktionov, On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008), 173-208.  doi: 10.1007/s10665-007-9146-6.  Google Scholar

[10]

V. A. Galaktionov, Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008), 395-431.  doi: 10.1111/j.1467-9590.2008.00421.x.  Google Scholar

[11]

V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635. Google Scholar

[12]

V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146, arXiv: 0901.4279.  Google Scholar

[13]

V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632). doi: 10.1017/S0956792509990118.  Google Scholar

[14]

V. A. Galaktionov, Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011), 103-143.  doi: 10.1111/j.1467-9590.2010.00499.x.  Google Scholar

[15]

V. A. Galaktionov and S. I. Pohozaev, Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008), 1784-1810.  doi: 10.1134/S0965542508100060.  Google Scholar

[16]

V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007.  Google Scholar

[17]

M. Inc, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007), 1275-1284.  doi: 10.1016/j.chaos.2006.01.083.  Google Scholar

[18]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.  Google Scholar

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988.  Google Scholar

[20]

M. A. Naimark, Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968.  Google Scholar

[21]

M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974.  Google Scholar

[22]

Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003), 869-880.  doi: 10.1016/S0960-0779(03)00059-6.  Google Scholar

[23]

Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust. Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35.  Google Scholar

show all references

References:
[1]

P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537.  doi: 10.1007/s00030-011-0105-6.  Google Scholar

[2]

P. Álvarez-CaudevillaJ. D. Evans and V. A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013), 1761-1792.  doi: 10.1007/s00009-013-0263-3.  Google Scholar

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015), 19-35.  doi: 10.1016/j.na.2014.08.002.  Google Scholar

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[5]

J. Eggers and M. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44.  doi: 10.1088/0951-7715/22/1/R01.  Google Scholar

[6]

Yu. V. EgorovV. A. GalaktionovV. A. Kondratiev and S. I. Pohozaev, Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038.   Google Scholar

[7]

J. D. EvansV. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007), 1799-1841, 1843-1881.  doi: 10.1088/0951-7715/20/8/003.  Google Scholar

[8]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235.  doi: 10.1016/j.jmaa.2006.11.058.  Google Scholar

[9]

V. A. Galaktionov, On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008), 173-208.  doi: 10.1007/s10665-007-9146-6.  Google Scholar

[10]

V. A. Galaktionov, Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008), 395-431.  doi: 10.1111/j.1467-9590.2008.00421.x.  Google Scholar

[11]

V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635. Google Scholar

[12]

V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146, arXiv: 0901.4279.  Google Scholar

[13]

V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632). doi: 10.1017/S0956792509990118.  Google Scholar

[14]

V. A. Galaktionov, Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011), 103-143.  doi: 10.1111/j.1467-9590.2010.00499.x.  Google Scholar

[15]

V. A. Galaktionov and S. I. Pohozaev, Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008), 1784-1810.  doi: 10.1134/S0965542508100060.  Google Scholar

[16]

V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007.  Google Scholar

[17]

M. Inc, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007), 1275-1284.  doi: 10.1016/j.chaos.2006.01.083.  Google Scholar

[18]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.  Google Scholar

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988.  Google Scholar

[20]

M. A. Naimark, Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968.  Google Scholar

[21]

M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974.  Google Scholar

[22]

Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003), 869-880.  doi: 10.1016/S0960-0779(03)00059-6.  Google Scholar

[23]

Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust. Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35.  Google Scholar

Figure 1.  Illustrative numerical solutions of the oscillatory function $H(s)$ from (2.8) in the case $n = 1$ and selected $\beta$
Figure 2.  Shooting the first similarity profile satisfying (5.5), (5.7) for $n = 1$
Figure 3.  he first similarity profiles satisfying (5.5), (5.7) for $n = 3, 2, 1, 0$ and $n = -0.5$
Figure 4.  Numerical solution in the $n=0$ case of (3.1) with (3.7) and $\nu=g"'(0)=-1,\alpha=0.5$
[1]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[2]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[8]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[9]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[10]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[19]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[20]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (175)
  • HTML views (150)
  • Cited by (0)

[Back to Top]