-
Previous Article
Periodic linear motions with multiple collisions in a forced Kepler type problem
- DCDS Home
- This Issue
-
Next Article
Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation
Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space
1. | School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China |
2. | Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA |
In this paper we mainly classify the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space $\mathbb{R}_+^{n}$, and also present some remarks on the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the whole space $\mathbb{R}^{n}$. Our main techniques are Kelvin transformation and the method of moving spheres in integral forms.
References:
[1] |
W. Beckner,
Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242.
doi: 10.2307/2946638. |
[2] |
T. P. Branson, L. Fontana and C. Morpurgo,
Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013), 1-52.
doi: 10.4007/annals.2013.177.1.1. |
[3] |
E. Carlen and M. Loss,
Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992), 90-104.
doi: 10.1007/BF01895706. |
[4] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
K. S. Chou and T. Y. H. Wan,
Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269-276.
doi: 10.2140/pjm.1994.163.269. |
[6] |
J. Dou and M. Zhu,
Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015), 651-687.
doi: 10.1093/imrn/rnt213. |
[7] |
Y. Y. Li,
Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.
|
[8] |
Y. Y. Li and L. Zhang,
Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87.
doi: 10.1007/BF02786551. |
[9] |
Y. Y. Li and M. Zhu,
Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8. |
[10] |
C. S. Lin,
A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[11] |
C. Morpurgo,
The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996), 146-171.
doi: 10.1007/BF02246771. |
[12] |
Q. A. Ngô and V. H. Nguyen,
Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017), 6187-6230.
doi: 10.1093/imrn/rnw108. |
[13] |
W. M. Ni,
On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040. |
[14] |
E. Onofri,
On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326.
doi: 10.1007/BF01212171. |
[15] |
J. Wei and X. Xu,
Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009), 1995-2023.
doi: 10.1016/j.jfa.2009.06.024. |
[16] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[17] |
X. Xu,
Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005), 1-28.
doi: 10.1016/j.jfa.2004.07.003. |
show all references
References:
[1] |
W. Beckner,
Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242.
doi: 10.2307/2946638. |
[2] |
T. P. Branson, L. Fontana and C. Morpurgo,
Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013), 1-52.
doi: 10.4007/annals.2013.177.1.1. |
[3] |
E. Carlen and M. Loss,
Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992), 90-104.
doi: 10.1007/BF01895706. |
[4] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
K. S. Chou and T. Y. H. Wan,
Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269-276.
doi: 10.2140/pjm.1994.163.269. |
[6] |
J. Dou and M. Zhu,
Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015), 651-687.
doi: 10.1093/imrn/rnt213. |
[7] |
Y. Y. Li,
Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.
|
[8] |
Y. Y. Li and L. Zhang,
Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87.
doi: 10.1007/BF02786551. |
[9] |
Y. Y. Li and M. Zhu,
Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8. |
[10] |
C. S. Lin,
A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[11] |
C. Morpurgo,
The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996), 146-171.
doi: 10.1007/BF02246771. |
[12] |
Q. A. Ngô and V. H. Nguyen,
Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017), 6187-6230.
doi: 10.1093/imrn/rnw108. |
[13] |
W. M. Ni,
On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040. |
[14] |
E. Onofri,
On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326.
doi: 10.1007/BF01212171. |
[15] |
J. Wei and X. Xu,
Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009), 1995-2023.
doi: 10.1016/j.jfa.2009.06.024. |
[16] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[17] |
X. Xu,
Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005), 1-28.
doi: 10.1016/j.jfa.2004.07.003. |
[1] |
Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951 |
[2] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[3] |
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 |
[4] |
Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791 |
[5] |
Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164 |
[6] |
Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057 |
[7] |
Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027 |
[8] |
Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018 |
[9] |
Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018 |
[10] |
Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653 |
[11] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022 |
[12] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[13] |
Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015 |
[14] |
Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure and Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008 |
[15] |
Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074 |
[16] |
Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 |
[17] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[18] |
Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223 |
[19] |
Daesung Kim. Instability results for the logarithmic Sobolev inequality and its application to related inequalities. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022053 |
[20] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]