August  2018, 38(8): 3939-3953. doi: 10.3934/dcds.2018171

Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space

1. 

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China

2. 

Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA

* Corresponding author: Jingbo Dou

Received  September 2017 Revised  January 2018 Published  May 2018

In this paper we mainly classify the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space $\mathbb{R}_+^{n}$, and also present some remarks on the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the whole space $\mathbb{R}^{n}$. Our main techniques are Kelvin transformation and the method of moving spheres in integral forms.

Citation: Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171
References:
[1]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242.  doi: 10.2307/2946638.

[2]

T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013), 1-52.  doi: 10.4007/annals.2013.177.1.1.

[3]

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992), 90-104.  doi: 10.1007/BF01895706.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.

[5]

K. S. Chou and T. Y. H. Wan, Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269-276.  doi: 10.2140/pjm.1994.163.269.

[6]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015), 651-687.  doi: 10.1093/imrn/rnt213.

[7]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. 

[8]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87.  doi: 10.1007/BF02786551.

[9]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.  doi: 10.1215/S0012-7094-95-08016-8.

[10]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.  doi: 10.1007/s000140050052.

[11]

C. Morpurgo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996), 146-171.  doi: 10.1007/BF02246771.

[12]

Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017), 6187-6230.  doi: 10.1093/imrn/rnw108.

[13]

W. M. Ni, On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.  doi: 10.1512/iumj.1982.31.31040.

[14]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326.  doi: 10.1007/BF01212171.

[15]

J. Wei and X. Xu, Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009), 1995-2023.  doi: 10.1016/j.jfa.2009.06.024.

[16]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.  doi: 10.1007/s002080050258.

[17]

X. Xu, Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005), 1-28.  doi: 10.1016/j.jfa.2004.07.003.

show all references

References:
[1]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242.  doi: 10.2307/2946638.

[2]

T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013), 1-52.  doi: 10.4007/annals.2013.177.1.1.

[3]

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992), 90-104.  doi: 10.1007/BF01895706.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.

[5]

K. S. Chou and T. Y. H. Wan, Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269-276.  doi: 10.2140/pjm.1994.163.269.

[6]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015), 651-687.  doi: 10.1093/imrn/rnt213.

[7]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. 

[8]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87.  doi: 10.1007/BF02786551.

[9]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.  doi: 10.1215/S0012-7094-95-08016-8.

[10]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.  doi: 10.1007/s000140050052.

[11]

C. Morpurgo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996), 146-171.  doi: 10.1007/BF02246771.

[12]

Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017), 6187-6230.  doi: 10.1093/imrn/rnw108.

[13]

W. M. Ni, On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.  doi: 10.1512/iumj.1982.31.31040.

[14]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326.  doi: 10.1007/BF01212171.

[15]

J. Wei and X. Xu, Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009), 1995-2023.  doi: 10.1016/j.jfa.2009.06.024.

[16]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.  doi: 10.1007/s002080050258.

[17]

X. Xu, Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005), 1-28.  doi: 10.1016/j.jfa.2004.07.003.

[1]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[2]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[3]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[4]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[5]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[6]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[7]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[8]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[9]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[10]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[11]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022

[12]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[13]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure and Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[14]

Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074

[15]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[16]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[17]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[18]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[19]

Daesung Kim. Instability results for the logarithmic Sobolev inequality and its application to related inequalities. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4297-4320. doi: 10.3934/dcds.2022053

[20]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (356)
  • HTML views (179)
  • Cited by (0)

Other articles
by authors

[Back to Top]