August  2018, 38(8): 3955-3975. doi: 10.3934/dcds.2018172

Periodic linear motions with multiple collisions in a forced Kepler type problem

1. 

Fac. Ciências da Univ. Lisboa e Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Campo Grande, Edifício C6, piso 2, P-1749-016 Lisboa, Portugal

2. 

Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Campo Grande, Edifício C6, piso 2, P-1749-016 Lisboa, Portugal

* Corresponding author: Carlota Rebelo

Received  October 2017 Revised  March 2018 Published  May 2018

In [7] the author proved the existence of multiple periodic linear motions with collisions for a periodically forced Kepler problem. We extend this result obtaining periodic solutions with multiple collisions for a forced Kepler type problem. In order to do that we apply the Poincaré-Birkhoff theorem.

Citation: Carlota Rebelo, Alexandre Simões. Periodic linear motions with multiple collisions in a forced Kepler type problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3955-3975. doi: 10.3934/dcds.2018172
References:
[1]

P. AmsterJ. HaddadR. Ortega and A. J. Ureña, Periodic motions in forced problems of Kepler type, NODEA, 18 (2011), 649-657.  doi: 10.1007/s00030-011-0111-8.  Google Scholar

[2]

F. Dalbono and C. Rebelo, Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Turin Fortnight Lectures on Nonlinear Analysis, Rend. Sem. Mat. Univ. Politec. Torino, 60 (2002), 233-263.   Google Scholar

[3]

J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151.  doi: 10.2307/1971464.  Google Scholar

[4]

M. W. Hirsch, Differential Topology, Springer-Verlag, 1976.  Google Scholar

[5]

P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. of the AMS, 138 (2010), 703-715.  doi: 10.1090/S0002-9939-09-10105-3.  Google Scholar

[6]

S. Marò, Periodic solution of a forced relativistic pendulum via twist dynamics, Topological Methods in Nonlinear Analysis, 42 (2013), 51-75.   Google Scholar

[7]

R. Ortega, Linear motions in a periodically forced Kepler problem, Portugaliae Mathematica, 68 (2011), 149-176.  doi: 10.4171/PM/1885.  Google Scholar

[8]

A. Simões, Bouncing solutions in a generalized Kepler problem, Master Thesis, University of Lisbon, 2016. Google Scholar

[9]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[10]

H. J. Sperling, The collision singularity in a perturbed two-body problem, Celestial Mechanics, 1 (1969/1970), 213-221.  doi: 10.1007/BF01228841.  Google Scholar

[11]

L. Zhao, Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud., 16 (2016), 45-49.  doi: 10.1515/ans-2015-5021.  Google Scholar

show all references

References:
[1]

P. AmsterJ. HaddadR. Ortega and A. J. Ureña, Periodic motions in forced problems of Kepler type, NODEA, 18 (2011), 649-657.  doi: 10.1007/s00030-011-0111-8.  Google Scholar

[2]

F. Dalbono and C. Rebelo, Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Turin Fortnight Lectures on Nonlinear Analysis, Rend. Sem. Mat. Univ. Politec. Torino, 60 (2002), 233-263.   Google Scholar

[3]

J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151.  doi: 10.2307/1971464.  Google Scholar

[4]

M. W. Hirsch, Differential Topology, Springer-Verlag, 1976.  Google Scholar

[5]

P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. of the AMS, 138 (2010), 703-715.  doi: 10.1090/S0002-9939-09-10105-3.  Google Scholar

[6]

S. Marò, Periodic solution of a forced relativistic pendulum via twist dynamics, Topological Methods in Nonlinear Analysis, 42 (2013), 51-75.   Google Scholar

[7]

R. Ortega, Linear motions in a periodically forced Kepler problem, Portugaliae Mathematica, 68 (2011), 149-176.  doi: 10.4171/PM/1885.  Google Scholar

[8]

A. Simões, Bouncing solutions in a generalized Kepler problem, Master Thesis, University of Lisbon, 2016. Google Scholar

[9]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[10]

H. J. Sperling, The collision singularity in a perturbed two-body problem, Celestial Mechanics, 1 (1969/1970), 213-221.  doi: 10.1007/BF01228841.  Google Scholar

[11]

L. Zhao, Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud., 16 (2016), 45-49.  doi: 10.1515/ans-2015-5021.  Google Scholar

Figure 1.  The restriction of a possible (according to Proposition 2) set $D$ to the strip $0\le t_0\le 2\pi$
Figure 2.  Cylinder $B$
[1]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[2]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[6]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[7]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[8]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[9]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[10]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[13]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[16]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[17]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[18]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[19]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[20]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (109)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]