In [
Citation: |
P. Amster
, J. Haddad
, R. Ortega
and A. J. Ureña
, Periodic motions in forced problems of Kepler type, NODEA, 18 (2011)
, 649-657.
doi: 10.1007/s00030-011-0111-8.![]() ![]() ![]() |
|
F. Dalbono
and C. Rebelo
, Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, Turin Fortnight Lectures on Nonlinear Analysis, Rend. Sem. Mat. Univ. Politec. Torino, 60 (2002)
, 233-263.
![]() ![]() |
|
J. Franks
, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988)
, 139-151.
doi: 10.2307/1971464.![]() ![]() ![]() |
|
M. W. Hirsch,
Differential Topology, Springer-Verlag, 1976.
![]() ![]() |
|
P. Le Calvez
and J. Wang
, Some remarks on the Poincaré-Birkhoff theorem, Proc. of the AMS, 138 (2010)
, 703-715.
doi: 10.1090/S0002-9939-09-10105-3.![]() ![]() ![]() |
|
S. Marò
, Periodic solution of a forced relativistic pendulum via twist dynamics, Topological Methods in Nonlinear Analysis, 42 (2013)
, 51-75.
![]() ![]() |
|
R. Ortega
, Linear motions in a periodically forced Kepler problem, Portugaliae Mathematica, 68 (2011)
, 149-176.
doi: 10.4171/PM/1885.![]() ![]() ![]() |
|
A. Simões, Bouncing solutions in a generalized Kepler problem, Master Thesis, University of Lisbon, 2016.
![]() |
|
H. L. Smith and P. Waltman,
The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() ![]() |
|
H. J. Sperling
, The collision singularity in a perturbed two-body problem, Celestial Mechanics, 1 (1969/1970)
, 213-221.
doi: 10.1007/BF01228841.![]() ![]() ![]() |
|
L. Zhao
, Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud., 16 (2016)
, 45-49.
doi: 10.1515/ans-2015-5021.![]() ![]() ![]() |
The restriction of a possible (according to Proposition 2) set
Cylinder