The continuity of joint and generalized spectral radius is proved for Hölder continuous cocycles over hyperbolic systems. We also prove the periodic approximation of Lyapunov exponents for non-invertible non-uniformly hyperbolic systems, and establish the Berger-Wang formula for general dynamical systems.
Citation: |
L. Backes
, On the periodic approximation of Lyapunov exponents for semi-invertible cocycles, Discrete Contin. Dyn. Syst., 37 (2017)
, 6353-6368.
doi: 10.3934/dcds.2017275.![]() ![]() ![]() |
|
N. E. Barabanov
, On the Lyapunov exponent of discrete inclusions. I, Avtomat. i Telemekh., 49 (1988)
, 40-46.
![]() ![]() |
|
L. Barrira and Ya. Pesin,
Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9781107326026.![]() ![]() ![]() |
|
M. A. Berger
and Y. Wang
, Bounded semigroups of matrices, Linear Algebra Appl., 166 (1992)
, 21-27.
doi: 10.1016/0024-3795(92)90267-E.![]() ![]() ![]() |
|
R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008.
![]() ![]() |
|
X. Dai
, On the approximation of Lyapunov exponents and a question suggested by Anatole Katok, Nonlinearity, 23 (2010)
, 513-528.
doi: 10.1088/0951-7715/23/3/004.![]() ![]() ![]() |
|
X. Dai
, Exponential closing property and approximation of Lyapunov exponents of linear cocycles, Forum Math., 23 (2011)
, 321-347.
doi: 10.1515/FORM.2011.011.![]() ![]() ![]() |
|
X. Dai
, A Gel'fand-type spectral-radius formula and stability of linear constrained switching systems, Linear Algebra Appl., 436 (2012)
, 1099-1113.
doi: 10.1016/j.laa.2011.07.029.![]() ![]() ![]() |
|
X. Dai
, Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations, J. Franklin Inst., 351 (2014)
, 2910-2937.
doi: 10.1016/j.jfranklin.2014.01.010.![]() ![]() ![]() |
|
X. Dai
, T. Huang
and Y. Huang
, Exponential stability of matrix-valued Markov chains via nonignorable periodic data, Trans. Amer. Math. Soc., 369 (2017)
, 5271-5292.
doi: 10.1090/tran/6912.![]() ![]() ![]() |
|
D. Dragičević
and G. Froyland
, Hölder continuity of Oseledets splittings for semi-invertible operator cocycles, Ergodic Theory Dynam. Systems, 38 (2018)
, 961-981.
doi: 10.1017/etds.2016.55.![]() ![]() ![]() |
|
G. Froyland
, S. Lloyd
and A. Quas
, Coherent structures and isolated spectrum for Perron-Frobenius cocycles, Ergodic Theory Dynam. Systems, 30 (2010)
, 729-756.
doi: 10.1017/S0143385709000339.![]() ![]() ![]() |
|
B. Kalinin
, Livšic theorem for matrix cocycles, Ann. of Math. (2), 173 (2011)
, 1025-1042.
doi: 10.4007/annals.2011.173.2.11.![]() ![]() ![]() |
|
B. Kalinin and V. Sadovskaya, Periodic approximation of Lyapunov exponents for Banach cocycles Cambridge University Press, 2017, P43, arXiv: 1608. 05757.
doi: 10.1017/etds.2017.43.![]() ![]() |
|
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
|
V. Kozyakin
, An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., 433 (2010)
, 12-18.
doi: 10.1016/j.laa.2010.01.028.![]() ![]() ![]() |
|
R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, Geometric
dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983,
522–577.
doi: 10.1007/BFb0061433.![]() ![]() ![]() |
|
B. E. Moision
, A. Orlitsky
and P. H. Siegel
, On codes that avoid specified differences, IEEE Trans. Inform. Theory, 47 (2001)
, 433-442.
doi: 10.1109/18.904557.![]() ![]() ![]() |
|
I. D. Morris
, The generalised Berger-Wang formula and the spectral radius of linear cocycles, J. Funct. Anal., 262 (2012)
, 811-824.
doi: 10.1016/j.jfa.2011.09.021.![]() ![]() ![]() |
|
I. D. Morris
, Mather sets for sequences of matrices and applications to the study of joint spectral radii, Proc. Lond. Math. Soc., 107 (2013)
, 121-150.
doi: 10.1112/plms/pds080.![]() ![]() ![]() |
|
V. I. Oseledets
, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968)
, 179-210.
![]() ![]() |
|
C. Pugh
and M. Shub
, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989)
, 1-54.
doi: 10.1090/S0002-9947-1989-0983869-1.![]() ![]() ![]() |
|
G.-C. Rota
and G. Strang
, A note on the joint spectral radius, Indag. Math., 22 (1960)
, 379-381.
doi: 10.1016/S1385-7258(60)50046-1.![]() ![]() ![]() |
|
M. Viana and K. Oliveira,
Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 151, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316422601.![]() ![]() ![]() |
|
Y. Wang
and J. You
, Examples of discontinuity of Lyapunov exponent in smooth quasiperiodic cocycles, Duke Math. J., 162 (2013)
, 2363-2412.
doi: 10.1215/00127094-2371528.![]() ![]() ![]() |
|
Z. Wang
and W. Sun
, Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits, Trans. Amer. Math. Soc., 362 (2010)
, 4267-4282.
doi: 10.1090/S0002-9947-10-04947-0.![]() ![]() ![]() |
|
F. Wirth
, The generalized spectral radius and extremal norms, Linear Algebra Appl., 342 (2002)
, 17-40.
doi: 10.1016/S0024-3795(01)00446-3.![]() ![]() ![]() |