Let $L: = -Δ+V$ be a nonnegative Schrödinger operator on $L^2({\bf R}^N)$, where $N≥ 2$ and $V$ is a radially symmetric inverse square potential. In this paper we assume either $L$ is subcritical or null-critical and we establish a method for obtaining the precise description of the large time behavior of $e^{-tL}\varphi$, where $\varphi∈ L^2({\bf R}^N, e^{|x|^2/4}\, dx)$.
Citation: |
G. Barbatis
, S. Filippas
and A. Tertikas
, Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities, J. Funct. Anal., 208 (2004)
, 1-30.
doi: 10.1016/j.jfa.2003.10.002.![]() ![]() ![]() |
|
I. Chavel
and L. Karp
, Large time behavior of the heat kernel: The parabolic λ-potential alternative, Comment. Math. Helv., 66 (1991)
, 541-556.
doi: 10.1007/BF02566664.![]() ![]() ![]() |
|
F. Chiarenza
and R. Serapioni
, A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova, 73 (1985)
, 179-190.
![]() ![]() |
|
D. Cruz-Uribe and C. Rios, Gaussian bounds for degenerate parabolic equations, J. Funct. Anal., 255 (2008), 283–312; Corrigendum in J. Funct. Anal., 267 (2014), 3507–3513.
doi: 10.1016/j.jfa.2008.01.017.![]() ![]() ![]() |
|
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge Univ. Press 1989.
doi: 10.1017/CBO9780511566158.![]() ![]() ![]() |
|
E. B. Davies
and B. Simon
, Lp norms of noncritical Schrödinger semigroups, J. Funct. Anal., 102 (1991)
, 95-115.
doi: 10.1016/0022-1236(91)90137-T.![]() ![]() ![]() |
|
A. Grigor'yan, Heat Kernel and Analysis on Manifolds, AMS, Providence, RI, 2009.
![]() ![]() |
|
A. Grigor'yan
and L. Saloff-Coste
, Stability results for Harnack inequalities, Ann. Inst. Fourier, 55 (2005)
, 825-890.
doi: 10.5802/aif.2116.![]() ![]() ![]() |
|
N. Ioku
, K. Ishige
and E. Yanagida
, Sharp decay estimates of Lq norms of nonnegative Schrödinger heat semigroups, J. Funct. Anal., 264 (2013)
, 2764-2783.
doi: 10.1016/j.jfa.2013.03.009.![]() ![]() ![]() |
|
N. Ioku
, K. Ishige
and E. Yanagida
, Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups, J. Math. Pures Appl., 103 (2015)
, 900-923.
doi: 10.1016/j.matpur.2014.09.006.![]() ![]() ![]() |
|
K. Ishige
, On the behavior of the solutions of degenerate parabolic equations, Nagoya Math. J., 155 (1999)
, 1-26.
doi: 10.1017/S0027763000006978.![]() ![]() ![]() |
|
K. Ishige
, Movement of hot spots on the exterior domain of a ball under the Neumann boundary condition, J. Differential Equations, 212 (2005)
, 394-431.
doi: 10.1016/j.jde.2004.11.002.![]() ![]() ![]() |
|
K. Ishige and Y. Kabeya, Large time behaviors of hot spots for the heat equation with a potential, J. Differential Equations, 244 (2008), 2934–2962; Corrigendum in J. Differential Equations 245 (2008), 2352–2354.
doi: 10.1016/j.jde.2008.07.023.![]() ![]() ![]() |
|
K. Ishige
and Y. Kabeya
, Hot spots for the heat equation with a rapidly decaying negative potential, Adv. Differential Equations, 14 (2009)
, 643-662.
![]() ![]() |
|
K. Ishige
and Y. Kabeya
, Hot spots for the two dimensional heat equation with a rapidly decaying negative potential, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011)
, 833-849.
doi: 10.3934/dcdss.2011.4.833.![]() ![]() ![]() |
|
K. Ishige
and Y. Kabeya
, Lq norms of nonnegative Schrödinger heat semigroup and the large time behavior of hot spots, J. Funct. Anal., 262 (2012)
, 2695-2733.
doi: 10.1016/j.jfa.2011.12.024.![]() ![]() ![]() |
|
K. Ishige and Y. Kabeya, Decay rate of Lq norms of critical Schrödinger heat semigroups, Geometric Properties for Parabolic and Elliptic PDE's, 165–178, Springer INdAM Ser., 2, Springer, Milan, 2013.
doi: 10.1007/978-88-470-2841-8_11.![]() ![]() |
|
K. Ishige, Y. Kabeya and A, Mukai, Hot spots of solutions to the heat equation with inverse square potential to appear in Applicable Anal., (2018), https://doi.org/10.1080/00036811.2018.1466284
doi: 10.1080/00036811.2018.1466284.![]() ![]() |
|
K. Ishige
, Y. Kabeya
and E. M. Ouhabaz
, The heat kernel of a Schrödinger operator with inverse square potential, Proc. Lond. Math. Soc., 115 (2017)
, 381-410.
doi: 10.1112/plms.12041.![]() ![]() ![]() |
|
O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society Translations, vol. 23, American Mathematical Society, Providence, RI, 1968.
![]() ![]() |
|
V. Liskevich
and Z. Sobol
, Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients, Potential Anal., 18 (2003)
, 359-390.
doi: 10.1023/A:1021877025938.![]() ![]() ![]() |
|
P. D. Milman
and Y. A. Semenov
, Global heat kernel bounds via desingularizing weights, J. Funct. Anal., 212 (2004)
, 373-398.
doi: 10.1016/j.jfa.2003.12.008.![]() ![]() ![]() |
|
N. Mizoguchi
, H. Ninomiya
and E. Yanagida
, Critical exponent for the bipolar blowup in a semilinear parabolic equation, J. Math. Anal. Appl., 218 (1998)
, 495-518.
doi: 10.1006/jmaa.1997.5815.![]() ![]() ![]() |
|
L. Moschini
and A. Tesei
, Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential, Rend. Mat. Acc. Lincei, 16 (2005)
, 171-180.
![]() ![]() |
|
L. Moschini
and A. Tesei
, Parabolic Harnack inequality for the heat equation with inverse-square potential, Forum Math., 19 (2007)
, 407-427.
doi: 10.1515/FORUM.2007.017.![]() ![]() ![]() |
|
M. Murata
, Positive solutions and large time behaviors of Schrödinger semigroups, Simon's problem, J. Funct. Anal., 56 (1984)
, 300-310.
doi: 10.1016/0022-1236(84)90079-X.![]() ![]() ![]() |
|
M. Murata
, Structure of positive solutions to (-Δ+V)u = 0 in Rn, Proceedings of the Conference on Spectral and Scattering Theory for Differential Operators (Fujisakura-so, 1986), (1986)
, 64-108.
doi: 10.1215/S0012-7094-86-05347-0.![]() ![]() ![]() |
|
E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monographs, 31, Princeton Univ. Press 2005.
![]() ![]() |
|
Y. Pinchover
, On criticality and ground states of second order elliptic equations, Ⅱ, J. Differential Equations, 87 (1990)
, 353-364.
doi: 10.1016/0022-0396(90)90007-C.![]() ![]() ![]() |
|
Y. Pinchover
, Large time behavior of the heat kernel and the behavior of the Green function near criticality for nonsymmetric elliptic operators, J. Funct. Anal., 104 (1992)
, 54-70.
doi: 10.1016/0022-1236(92)90090-6.![]() ![]() ![]() |
|
Y. Pinchover
, On positivity, criticality, and the spectral radius of the shuttle operator for elliptic operators, Duke Math. J., 85 (1996)
, 431-445.
doi: 10.1215/S0012-7094-96-08518-X.![]() ![]() ![]() |
|
Y. Pinchover
, Large time behavior of the heat kernel, J. Funct. Anal., 206 (2004)
, 191-209.
doi: 10.1016/S0022-1236(03)00110-1.![]() ![]() |
|
Y. Pinchover, Some aspects of large time behavior of the heat kernel: An overview with perspectives, Mathematical Physics, Spectral Theory and Stochastic Analysis (Basel) (M. Demuth and W. Kirsch, eds.), Operator Theory: Advances and Applications, vol. 232, Springer Verlag, 2013,299–339.
doi: 10.1007/978-3-0348-0591-9_6.![]() ![]() ![]() |
|
B. Simon
, Large time behavior of the Lp norm of Schrödinger semigroups, J. Funct. Anal., 40 (1981)
, 66-83.
doi: 10.1016/0022-1236(81)90073-2.![]() ![]() ![]() |
|
J. L. Vázquez
and E. Zuazua
, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000)
, 103-153.
doi: 10.1006/jfan.1999.3556.![]() ![]() ![]() |
|
Q. S. Zhang
, Large time behavior of Schrödinger heat kernels and applications, Comm. Math. Phys., 210 (2000)
, 371-398.
doi: 10.1007/s002200050784.![]() ![]() ![]() |
|
Q. S. Zhang
, Global bounds of Schrödinger heat kernels with negative potentials, J. Funct. Anal., 182 (2001)
, 344-370.
doi: 10.1006/jfan.2000.3737.![]() ![]() ![]() |