    August  2018, 38(8): 4071-4085. doi: 10.3934/dcds.2018177

## The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4

 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, I-20125 Milano, Italy

Received  November 2017 Revised  March 2018 Published  May 2018

We consider the higher differentiability of solutions to the problem of minimising
 $\int_{Ω} [L(\nabla v(x))+g(x, v(x))]dx~~~ \hbox {on}~~~ u^0+W^{1, p}_0(Ω)$
where
 $\Omega\subset \mathbb R^N$
,
 $L(ξ) = l(|ξ|) = \frac{1}{p}|ξ|^p$
and
 $u^0∈ W^{1, p}(Ω)$
and hence, in particular, the higher differentiability of weak solution to the equation
 ${\rm div }(|\nabla u|^ {p-2}\nabla u) = f.$
We show that, for
 $3≤ p < 4$
, under suitable assumptions on
 $g$
, there exists a solution
 $u^*$
to the Euler-Lagrange equation associated to the minimisation problem, such that
 $\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$
for
 $0 < s < 4-p$
. In particular, for
 $p = 3$
, we show that the solution
 $u^*$
is such that
 $\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$
for every
 $s < 1$
. This result is independent of
 $N$
. We present an example for
 $N = 1$
and
 $p = 3$
whose solution
 $u$
is such that
 $\nabla u^*$
is not in
 $W^{1, 2}_{loc}(\Omega)$
, thus showing that our result is sharp.
Citation: Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177
##### References:
  B. Avelin, T. Kuusi and G. Mingione, Nonlinear Calderon-Zygmund theory in the limiting case, Arch. Rat. Mech. Anal., 227 (2018), 663-714.  doi: 10.1007/s00205-017-1171-7.   A. Cellina, The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p < 3, ESAIM: COCV, 23 (2017), 1543-1553.  doi: 10.1051/cocv/2016064.   A. Cianchi and V. G. Maz'ya, Second-order two-sided estimates in nonlinear elliptic problems, Archive for Rational Mechanics and Analysis, (2017), 1-31.  doi: 10.1007/s00205-018-1223-7.  F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-1-4471-2807-6.   E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.   L. Esposito and G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complutense, 11 (1998), 203-219.  E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994.  O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian. Academic Press, New York-London, 1968.  J. J. Manfredi and A. Weitsman, On the Fatou Theorem for p-harmonic functions, Comm. Partial Differential Equations, 13 (1988), 651-668.  doi: 10.1080/03605308808820556.   W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989. doi: 10.1007/978-1-4612-1015-3.   show all references

##### References:
  B. Avelin, T. Kuusi and G. Mingione, Nonlinear Calderon-Zygmund theory in the limiting case, Arch. Rat. Mech. Anal., 227 (2018), 663-714.  doi: 10.1007/s00205-017-1171-7.   A. Cellina, The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p < 3, ESAIM: COCV, 23 (2017), 1543-1553.  doi: 10.1051/cocv/2016064.   A. Cianchi and V. G. Maz'ya, Second-order two-sided estimates in nonlinear elliptic problems, Archive for Rational Mechanics and Analysis, (2017), 1-31.  doi: 10.1007/s00205-018-1223-7.  F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-1-4471-2807-6.   E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.   L. Esposito and G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complutense, 11 (1998), 203-219.  E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994.  O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian. Academic Press, New York-London, 1968.  J. J. Manfredi and A. Weitsman, On the Fatou Theorem for p-harmonic functions, Comm. Partial Differential Equations, 13 (1988), 651-668.  doi: 10.1080/03605308808820556.   W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989. doi: 10.1007/978-1-4612-1015-3.   Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033  Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371  Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040  John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533  Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012  Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020  Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130  Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control and Related Fields, 2021, 11 (3) : 653-679. doi: 10.3934/mcrf.2021017  Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171  Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063  CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004  Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922  Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019  Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063  Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069  Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469  Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595  Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107  Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191  Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

2021 Impact Factor: 1.588