\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider the higher differentiability of solutions to the problem of minimising

    where $\Omega\subset \mathbb R^N$, $L(ξ) = l(|ξ|) = \frac{1}{p}|ξ|^p$ and $ u^0∈ W^{1, p}(Ω)$ and hence, in particular, the higher differentiability of weak solution to the equation

    ${\rm div }(|\nabla u|^ {p-2}\nabla u) = f.$

    We show that, for $3≤ p < 4$, under suitable assumptions on $g$, there exists a solution $ u^*$ to the Euler-Lagrange equation associated to the minimisation problem, such that

    $\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$

    for $0 < s < 4-p$. In particular, for $p = 3$, we show that the solution $u^*$ is such that $\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$ for every $s < 1$. This result is independent of $N$. We present an example for $N = 1$ and $p = 3$ whose solution $u$ is such that $\nabla u^*$ is not in $W^{1, 2}_{loc}(\Omega)$, thus showing that our result is sharp.

    Mathematics Subject Classification: 49K10, 35J25, 35J60, 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   B. Avelin , T. Kuusi  and  G. Mingione , Nonlinear Calderon-Zygmund theory in the limiting case, Arch. Rat. Mech. Anal., 227 (2018) , 663-714.  doi: 10.1007/s00205-017-1171-7.
      A. Cellina , The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p < 3, ESAIM: COCV, 23 (2017) , 1543-1553.  doi: 10.1051/cocv/2016064.
      A. Cianchi  and  V. G. Maz'ya , Second-order two-sided estimates in nonlinear elliptic problems, Archive for Rational Mechanics and Analysis, (2017) , 1-31.  doi: 10.1007/s00205-018-1223-7.
      F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-1-4471-2807-6.
      E. Di Nezza , G. Palatucci  and  E. Valdinoci , Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012) , 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
      L. Esposito  and  G. Mingione , Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complutense, 11 (1998) , 203-219. 
      E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994.
      O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian. Academic Press, New York-London, 1968.
      J. J. Manfredi  and  A. Weitsman , On the Fatou Theorem for p-harmonic functions, Comm. Partial Differential Equations, 13 (1988) , 651-668.  doi: 10.1080/03605308808820556.
      W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989. doi: 10.1007/978-1-4612-1015-3.
  • 加载中
SHARE

Article Metrics

HTML views(2813) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return