We consider the higher differentiability of solutions to the problem of minimising
where
${\rm div }(|\nabla u|^ {p-2}\nabla u) = f.$
We show that, for
$\nabla u^*∈ W^{s, 2}_{loc}(\Omega)$
for
| Citation: |
B. Avelin
, T. Kuusi
and G. Mingione
, Nonlinear Calderon-Zygmund theory in the limiting case, Arch. Rat. Mech. Anal., 227 (2018)
, 663-714.
doi: 10.1007/s00205-017-1171-7.
|
|
A. Cellina
, The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p < 3, ESAIM: COCV, 23 (2017)
, 1543-1553.
doi: 10.1051/cocv/2016064.
|
|
A. Cianchi
and V. G. Maz'ya
, Second-order two-sided estimates in nonlinear elliptic problems, Archive for Rational Mechanics and Analysis, (2017)
, 1-31.
doi: 10.1007/s00205-018-1223-7.
|
|
F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, Heidelberg, 2012.
doi: 10.1007/978-1-4471-2807-6.
|
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.
|
|
L. Esposito
and G. Mingione
, Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complutense, 11 (1998)
, 203-219.
|
|
E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994.
|
|
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian. Academic Press, New York-London, 1968.
|
|
J. J. Manfredi
and A. Weitsman
, On the Fatou Theorem for p-harmonic functions, Comm. Partial Differential Equations, 13 (1988)
, 651-668.
doi: 10.1080/03605308808820556.
|
|
W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989.
doi: 10.1007/978-1-4612-1015-3.
|