August  2018, 38(8): 4189-4202. doi: 10.3934/dcds.2018182

Bifurcation of limit cycles for a family of perturbed Kukles differential systems

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Ⅷ-región, Chile

* Corresponding author: S. Rebollo-Perdomo

Received  December 2017 Published  May 2018

Fund Project: The authors are supported by Universidad de Bío-Bío grant DIUBB 167208 2/R.

We consider an integrable non-Hamiltonian system, which belongs to the quadratic Kukles differential systems. It has a center surrounded by a bounded period annulus. We study polynomial perturbations of such a Kukles system inside the Kukles family. We apply averaging theory to study the limit cycles that bifurcate from the period annulus and from the center of the unperturbed system. First, we show that the periodic orbits of the period annulus can be parametrized explicitly through the Lambert function. Later, we prove that at most one limit cycle bifurcates from the period annulus, under quadratic perturbations. Moreover, we give conditions for the non-existence, existence, and stability of the bifurcated limit cycles. Finally, by using averaging theory of seventh order, we prove that there are cubic systems, close to the unperturbed system, with 1 and 2 small limit cycles.

Citation: Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182
References:
[1]

J. ChavarrigaI. A. GarcíaE. Sáez and I. Szántó, Limit cycles in Kukles systems of arbitrary degree with invariant ellipse, Nonlinear Anal., 67 (2007), 1005-1014.  doi: 10.1016/j.na.2006.06.035.  Google Scholar

[2]

R. M. CorlessG. H. GonnetD. E. G. HareD. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.  Google Scholar

[3]

J. GinéM. Grau and J. Llibre, Averaging theory at any order for computing periodic orbits, Physica D, 250 (2013), 58-65.  doi: 10.1016/j.physd.2013.01.015.  Google Scholar

[4]

D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 8 (1902), 437-479.  doi: 10.1090/S0273-0979-00-00881-8.  Google Scholar

[5]

J. M. HillN. G. Lloyd and J. M. Pearson, Limit cycles of a predator-prey model with intratrophic predation, J. Math. Anal. Appl., 349 (2009), 544-555.  doi: 10.1016/j.jmaa.2008.09.022.  Google Scholar

[6]

J. Llibre and A. C. Mereu, Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Anal., 74 (2011), 1261-1271.  doi: 10.1016/j.na.2010.09.064.  Google Scholar

[7]

J. LlibreD. D. Novaes and M. A. Texeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583.  doi: 10.1088/0951-7715/27/3/563.  Google Scholar

[8]

J. LlibreD. D. Novaes and M. A. Texeira, Corrigendum: Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 2417.  doi: 10.1088/0951-7715/27/9/2417.  Google Scholar

[9]

J. LlibreS. Rebollo-Perdomo and J. Torregrosa, Limit cycles bifurcating from isochronous surfaces of revolution in $\mathbb{R}^3$, J. Math. Anal. Appl., 381 (2011), 414-426.  doi: 10.1016/j.jmaa.2011.04.009.  Google Scholar

[10]

I. Mezo and G. Keady, Some physical applications of generalized Lambert function, European Journal of Physics, 37 (2016), 065802 (10pp).  doi: 10.1088/0143-0807/37/6/065802.  Google Scholar

[11]

O. Osuna, S. Rebollo-Perdomo and G. Villaseñor, On a class of invariant algebraic curves for Kukles systems, Electron. J. Qual. Theory Differ. Equ., 2016, Paper No. 61, 12 pp.  Google Scholar

[12]

A. P. Sadovskiǐ, Cubic systems of nonlinear oscillations with seven limit cycles, Differ. Equ., 39 (2003), 505-516.  doi: 10.1023/A:1026010926840.  Google Scholar

[13]

E. Sáez and I. Szántó, Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse, Appl. Math. Lett., 25 (2012), 1695-1700.  doi: 10.1016/j.aml.2012.01.039.  Google Scholar

[14]

D. Veberi$\check{c}$, Lambert $W$ function for applications in physics, Comput. Phys. Commun., 183 (2012), 2622-2628.  doi: 10.1016/j.cpc.2012.07.008.  Google Scholar

[15]

H. ZangT. ZhangY. C. Tian and M. O. Tadé, Limit cycles for the Kukles system, J. Dyn. Control Syst., 14 (2008), 283-298.  doi: 10.1007/s10883-008-9036-x.  Google Scholar

show all references

References:
[1]

J. ChavarrigaI. A. GarcíaE. Sáez and I. Szántó, Limit cycles in Kukles systems of arbitrary degree with invariant ellipse, Nonlinear Anal., 67 (2007), 1005-1014.  doi: 10.1016/j.na.2006.06.035.  Google Scholar

[2]

R. M. CorlessG. H. GonnetD. E. G. HareD. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.  Google Scholar

[3]

J. GinéM. Grau and J. Llibre, Averaging theory at any order for computing periodic orbits, Physica D, 250 (2013), 58-65.  doi: 10.1016/j.physd.2013.01.015.  Google Scholar

[4]

D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 8 (1902), 437-479.  doi: 10.1090/S0273-0979-00-00881-8.  Google Scholar

[5]

J. M. HillN. G. Lloyd and J. M. Pearson, Limit cycles of a predator-prey model with intratrophic predation, J. Math. Anal. Appl., 349 (2009), 544-555.  doi: 10.1016/j.jmaa.2008.09.022.  Google Scholar

[6]

J. Llibre and A. C. Mereu, Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Anal., 74 (2011), 1261-1271.  doi: 10.1016/j.na.2010.09.064.  Google Scholar

[7]

J. LlibreD. D. Novaes and M. A. Texeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583.  doi: 10.1088/0951-7715/27/3/563.  Google Scholar

[8]

J. LlibreD. D. Novaes and M. A. Texeira, Corrigendum: Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 2417.  doi: 10.1088/0951-7715/27/9/2417.  Google Scholar

[9]

J. LlibreS. Rebollo-Perdomo and J. Torregrosa, Limit cycles bifurcating from isochronous surfaces of revolution in $\mathbb{R}^3$, J. Math. Anal. Appl., 381 (2011), 414-426.  doi: 10.1016/j.jmaa.2011.04.009.  Google Scholar

[10]

I. Mezo and G. Keady, Some physical applications of generalized Lambert function, European Journal of Physics, 37 (2016), 065802 (10pp).  doi: 10.1088/0143-0807/37/6/065802.  Google Scholar

[11]

O. Osuna, S. Rebollo-Perdomo and G. Villaseñor, On a class of invariant algebraic curves for Kukles systems, Electron. J. Qual. Theory Differ. Equ., 2016, Paper No. 61, 12 pp.  Google Scholar

[12]

A. P. Sadovskiǐ, Cubic systems of nonlinear oscillations with seven limit cycles, Differ. Equ., 39 (2003), 505-516.  doi: 10.1023/A:1026010926840.  Google Scholar

[13]

E. Sáez and I. Szántó, Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse, Appl. Math. Lett., 25 (2012), 1695-1700.  doi: 10.1016/j.aml.2012.01.039.  Google Scholar

[14]

D. Veberi$\check{c}$, Lambert $W$ function for applications in physics, Comput. Phys. Commun., 183 (2012), 2622-2628.  doi: 10.1016/j.cpc.2012.07.008.  Google Scholar

[15]

H. ZangT. ZhangY. C. Tian and M. O. Tadé, Limit cycles for the Kukles system, J. Dyn. Control Syst., 14 (2008), 283-298.  doi: 10.1007/s10883-008-9036-x.  Google Scholar

Figure 1.  a) Graph of $\mathcal{F}_1(r_0)$ for (20). b) Phase portrait of (20) with $\varepsilon = 1/50$
[1]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[2]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[3]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[4]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[5]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[6]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[7]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[8]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[11]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[12]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[13]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[14]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[15]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[16]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (151)
  • HTML views (161)
  • Cited by (3)

Other articles
by authors

[Back to Top]