This paper is concerned with the optimal convergence rate in homogenization of higher order parabolic systems with bounded measurable, rapidly oscillating periodic coefficients. The sharp $O(\varepsilon )$ convergence rate in the space $L^2(0, T; H^{m-1}(\Omega ))$ is obtained for both the initial-Dirichlet problem and the initial-Neumann problem. The duality argument inspired by [
Citation: |
[1] | S. N. Armstrong, A. Bordas and J. C. Mourrat, Quantitative stochastic homogenization and regularity theory of parabolic equations, preprint, arXiv: 1705.07672. |
[2] | M. Avellaneda and F. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), 803-847. doi: 10.1002/cpa.3160400607. |
[3] | A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 5, North-Holland Publishing Company Amsterdam, 1978. |
[4] | S. Byun and Y. Jang, Calderón-Zygmund estimate for homogenization of parabolic systems, Discrete Contin. Dyn. Syst., 36 (2016), 6689-6714. doi: 10.3934/dcds.2016091. |
[5] | H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460. doi: 10.1090/tran/6605. |
[6] | J. Geng and Z. Shen, Uniform regularity estimates in parabolic homogenization, Indiana Univ. Math. J., 64 (2015), 697-733. doi: 10.1512/iumj.2015.64.5503. |
[7] | J. Geng and Z. Shen, Convergence rates in parabolic homogenization with time-dependent periodic coefficients, J. Funct. Anal., 272 (2017), 2092-2113. doi: 10.1016/j.jfa.2016.10.005. |
[8] | G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286. |
[9] | S. Gu, Convergence rates in homogenization of Stokes systems, J. Differential Equations, 260 (2016), 5796-5815. doi: 10.1016/j.jde.2015.12.017. |
[10] | V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Berlin Heidelberg, 1994. doi: 10.1007/978-3-642-84659-5. |
[11] | C. E. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal., 203 (2012), 1009-1036. doi: 10.1007/s00205-011-0469-0. |
[12] | C. E. Kenig, F. Lin and Z. Shen, Homogenization of elliptic systems with {N}eumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901-937. doi: 10.1090/S0894-0347-2013-00769-9. |
[13] | C. E. Kenig, F. Lin and Z. Shen, Periodic homogenization of Green and Neumann functions, Comm. Pure Appl. Math., 67 (2014), 1219-1262. doi: 10.1002/cpa.21482. |
[14] | A. A. Kukushkin and T. A. Suslina, Homogenization of high-order elliptic operators with periodic coefficients, Algebra i Analiz, 28 (2016), 89-149. doi: 10.1090/spmj/1439. |
[15] | Y. M. Meshkova and T. A. Suslina, Homogenization of solutions of initial boundary value problems for parabolic systems, Funct. Anal. Appl., 49 (2015), 72-76. doi: 10.1007/s10688-015-0087-y. |
[16] | Y. M. Meshkova and T. A. Suslina, Homogenization of initial boundary value problems for parabolic systems with periodic coefficients, Appl. Anal., 95 (2016), 1736-1775. doi: 10.1080/00036811.2015.1068300. |
[17] | W. Niu, Z. Shen and Y. Xu, Convergence rates and interior estimates in homogenization of higher order elliptic systems, J. Funct. Anal., 274 (2018), 2356-2398. doi: 10.1016/j.jfa.2018.01.012. |
[18] | W. Niu and Y. Xu, Uniform Boundary Estimates in Homogenization of Higher Order Elliptic Systems, preprint, arXiv: 1709.04097. |
[19] | S. E. Pastukhova, Estimates in homogenization of higher-order elliptic operators, Appl. Anal., 95 (2016), 1449-1466. doi: 10.1080/00036811.2016.1151495. |
[20] | S. E. Pastukhova, Operator error estimates for homogenization of fourth order elliptic equations, St. Petersburg Math. J., 28 (2017), 273-289. doi: 10.1090/spmj/1450. |
[21] | Z. Shen, Boundary estimates in elliptic homogenization, Anal. PDE, 10 (2017), 653-694. doi: 10.2140/apde.2017.10.653. |
[22] | Z. Shen, Lectures on Periodic Homogenization of Elliptic Systems, preprint, arXiv: 1710.11257. |
[23] | Z. Shen and J. Zhuge, Convergence rates in periodic homogenization of systems of elasticity, Proc. Amer. Math. Soc., 145 (2017), 1187-1202. doi: 10.1090/proc/13289. |
[24] | T. A. Suslina, Homogenization of the parabolic Cauchy problem in the Sobolev class $H^1(\mathbb{R}^d)$, Funct. Anal. Appl., 44 (2010), 318-322. doi: 10.1007/s10688-010-0043-9. |
[25] | T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: $L^2$-operator error estimates, Mathematika, 59 (2013), 463-476. doi: 10.1112/S0025579312001131. |
[26] | T. A. Suslina, Homogenization of the Neumann problem for elliptic systems with periodic coefficients, SIAM J. Math. Anal., 45 (2013), 3453-3493. doi: 10.1137/120901921. |
[27] | T. A. Suslina, Homogenization of the dirichlet problem for higher-order elliptic equations with periodic coefficients, Algebra i Analiz, 29 (2017), 139-192. doi: 10.1090/spmj/1496. |
[28] | T. A. Suslina, Homogenization of the neumann problem for higher order elliptic equations with periodic coefficients, Complex Variables and Elliptic Equations, 0 (2017), 1-31. doi: 10.1080/17476933.2017.1365845. |
[29] | Q. Xu and S. Zhou, Quantitative estimates in homogenization of parabolic systems of elasticity in lipschitz cylinders, preprint, arXiv: 1705.01479. |
[30] | Y. Xu and W. Niu, Convergence rates in almost-periodic homogenization of higher-order elliptic systems, preprint, arXiv: 1712.01744. |
[31] | V. V. Zhikov and S. E. Pastukhova, Estimates of homogenization for a parabolic equation with periodic coefficients, Russ. J. Math. Phys., 13 (2006), 224-237. doi: 10.1134/S1061920806020087. |