We investigate the second order regularity of solutions to degenerate nonlinear elliptic equations.
Citation: |
[1] | A. Canino, P. Le and B. Sciunzi, Local $W_{loc}^{2, m\left(\cdot \right)}$ regularity for p(·)-Laplace equations, Manuscripta Mathematica, 140 (2013), 481-496. doi: 10.1007/s00229-012-0549-y. |
[2] | L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations, 206 (2004), 483-515. doi: 10.1016/j.jde.2004.05.012. |
[3] | E. Di Benedetto, $C^{1+α}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. doi: 10.1016/0362-546X(83)90061-5. |
[4] | T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269. doi: 10.1016/j.jfa.2012.02.018. |
[5] | G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3. |
[6] | C. Mercuri, G. Riey and B. Sciunzi, A regularity result for the p-Laplacian near uniform ellipticity, Siam J. Math. Anal., 48 (2016), 2059-2075. doi: 10.1137/16M1058546. |
[7] | G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Applications of Mathematics, 51 (2006), 355-426. doi: 10.1007/s10778-006-0110-3. |
[8] | G. Mingione, The Calderon-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(5), 6 (2007), 195-261. |
[9] | P. Pucci and J. Serrin, The Maximum Principle, Birkhauser, Boston, 2007. |
[10] | B. Sciunzi, Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA. Nonlinear Differential Equations and Applications, 14 (2007), 315-334. doi: 10.1007/s00030-007-5047-7. |
[11] | B. Sciunzi, Regularity and comparison principles for p-Laplace equations with vanishing source term, Comm. Cont. Math., 16 (2014), 450013, 20pp. doi: 10.1142/S0219199714500138. |
[12] | E. Teixeira, Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358 (2014), 241-256. doi: 10.1007/s00208-013-0959-5. |
[13] | P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. doi: 10.1016/0022-0396(84)90105-0. |