For $n≥ 3$ and $p = (n+2)/(n-2), $ we consider the Hénon equation with the homogeneous Neumann boundary condition
$ -Δ u + u = |x|^{α}u^{p}, \; u > 0 \;\text{in} \; Ω,\ \ \frac{\partial u}{\partial ν} = 0 \; \text{ on }\;\partial Ω,$
where $Ω \subset B(0,1) \subset \mathbb{R}^n, n ≥ 3$, $α≥ 0$ and $\partial^*Ω \equiv \partialΩ \cap \partial B(0,1) \ne \emptyset.$ It is well known that for $α = 0,$ there exists a least energy solution of the problem. We are concerned on the existence of a least energy solution for $α > 0$ and its asymptotic behavior as the parameter $α$ approaches from below to a threshold $α_0 ∈ (0,∞]$ for existence of a least energy solution.
Citation: |
Adimurthi
and G. Mancini
, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scu. Norm. Sup. Pisa, (1991)
, 9-25.
![]() ![]() |
|
Adimurthi
, G. Mancini
and S. L. Yadava
, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations, 20 (1995)
, 591-631.
doi: 10.1080/03605309508821110.![]() ![]() ![]() |
|
Adimurthi
, F. Pacella
and S. L. Yadava
, Characterization of concentration points and $L^∞$ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations, 8 (1995)
, 41-68.
![]() ![]() |
|
Adimurthi
, F. Pacella
and S. L. Yadava
, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993)
, 318-350.
doi: 10.1006/jfan.1993.1053.![]() ![]() ![]() |
|
M. Badiale
and E. Serra
, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Studies, 4 (2004)
, 453-467.
doi: 10.1515/ans-2004-0406.![]() ![]() ![]() |
|
H. Brézis
and L. Nirenberg
, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983)
, 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
|
J. Byeon
, S. Cho
and J. Park
, On the location of a peak point of a least energy solution for Hénon equation, Discrete Contin. Dyn. Syst., 30 (2011)
, 1055-1081.
doi: 10.3934/dcds.2011.30.1055.![]() ![]() ![]() |
|
J. Byeon
and Z.-Q. Wang
, On the Hénon equation: Asymptotic profile of ground states, Ann. Inst. H. Poincare Anal. Non Lineaire, 23 (2006)
, 803-828.
doi: 10.1016/j.anihpc.2006.04.001.![]() ![]() ![]() |
|
J. Byeon
and Z.-Q. Wang
, On the Hénon equation: Asymptotic profile of ground states $\amalg$, J. Differential Equations, 216 (2005)
, 78-108.
doi: 10.1016/j.jde.2005.02.018.![]() ![]() ![]() |
|
J. Byeon
and Z. Q. Wang
, On the Hénon equation with a Neumann boundary condition: Asymptotic profile of ground states, Journal of Functional Analysis, 274 (2018)
, 3325-3376.
doi: 10.1016/j.jfa.2018.03.015.![]() ![]() ![]() |
|
D. Cao
and S. Peng
, The asymptotic behaviour of the ground state solutions for Henon equation, J. Math. Anal. Appl., 278 (2003)
, 1-17.
doi: 10.1016/S0022-247X(02)00292-5.![]() ![]() ![]() |
|
D. Cao
, S. Peng
and S. Yan
, Asymptotic behaviour of ground state solutions for the Henon equation, IMA J. Appl. Math., 74 (2009)
, 468-480.
doi: 10.1093/imamat/hxn035.![]() ![]() ![]() |
|
J. Chabrowski
and M. Willem
, Least energy solutions of a critical Neumann problem with a weight, Calc. Var. Partial Differential Equations, 15 (2002)
, 421-431.
doi: 10.1007/s00526-002-0101-0.![]() ![]() ![]() |
|
G. Chen
, W. M. Ni
and J. Zhou
, Algorithms and visualization for solutions of nonlinear ellptic equations, Inter. Jour. Bifur. Chaos, 10 (2000)
, 1565-1612.
doi: 10.1142/S0218127400001006.![]() ![]() ![]() |
|
D. G. Costa
and P. M. Girão
, Existence and nonexistence of least energy solutions of the Neumann problem for a semilinear elliptic equation with critical Sobolev exponent and a critical lower-order perturbations, J. Differential Equations, 188 (2003)
, 164-202.
doi: 10.1016/S0022-0396(02)00070-0.![]() ![]() ![]() |
|
M. Gazzini
and E. Serra
, The Neumann problem for the Henon equation, trace inequalities
and Steklov eigenvalues, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008)
, 281-302.
doi: 10.1016/j.anihpc.2006.09.003.![]() ![]() ![]() |
|
D. Gilbarg and N. Trudinger,
Elliptic Partial Differntial Equations of Second Order, 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
|
M. Hénon
, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics, 24 (1973)
, 229-238.
![]() |
|
C. S. Lin
, W. M. Ni
and I. Takagi
, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988)
, 1-27.
doi: 10.1016/0022-0396(88)90147-7.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations, The limit case Ⅱ, Rev. Mat. Iberoamericana, 1 (1985)
, 45-121.
doi: 10.4171/RMI/12.![]() ![]() ![]() |
|
P. L. Lions
, F. Pacella
and M. Tricarico
, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37 (1988)
, 301-324.
doi: 10.1512/iumj.1988.37.37015.![]() ![]() ![]() |
|
W. M. Ni
, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982)
, 801-807.
doi: 10.1512/iumj.1982.31.31056.![]() ![]() ![]() |
|
W. M. Ni
, X. B. Pan
and I. Takagi
, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 67 (1992)
, 1-20.
doi: 10.1215/S0012-7094-92-06701-9.![]() ![]() ![]() |
|
W. M. Ni
and I. Takagi
, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991)
, 819-851.
doi: 10.1002/cpa.3160440705.![]() ![]() ![]() |
|
S. Secchi
and E. Serra
, Symmetry breaking results for problems with exponential growth in the unit disc, Comm. Contemp. Math., 8 (2006)
, 823-839.
doi: 10.1142/S0219199706002295.![]() ![]() ![]() |
|
E. Serra
, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005)
, 301-326.
doi: 10.1007/s00526-004-0302-9.![]() ![]() ![]() |
|
D. Smets
, J. Su
and M. Willem
, Non-radial ground states for the Hénon eqaution, Communications in Contemporary Mathematics, 4 (2002)
, 467-480.
doi: 10.1142/S0219199702000725.![]() ![]() ![]() |
|
D. Smets
, Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations, 18 (2003)
, 57-75.
doi: 10.1007/s00526-002-0180-y.![]() ![]() ![]() |
|
X. J. Wang
, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991)
, 283-310.
doi: 10.1016/0022-0396(91)90014-Z.![]() ![]() ![]() |
|
J. Wei
and S. Yan
, Infinitely many nonradial solutions for the Hénon equation with critical
growth, Rev. Mat. Iberoamericana, 29 (2013)
, 997-1020.
doi: 10.4171/RMI/747.![]() ![]() ![]() |