\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The maximal entropy measure of Fatou boundaries

  • * Corresponding author

    * Corresponding author 

The second author was partially supported by NSF grant DMS-1500817

Abstract Full Text(HTML) Related Papers Cited by
  • We look at the maximal entropy measure (MME) of the boundaries of connected components of the Fatou set of a rational map of degree $≥ 2$. We show that if there are infinitely many Fatou components, and if either the Julia set is disconnected or the map is hyperbolic, then there can be at most one Fatou component whose boundary has positive MME measure. We also replace hyperbolicity by the more general hypothesis of geometric finiteness.

    Mathematics Subject Classification: Primary: 37F10, 30D05; Secondary: 37A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-4422-6.
      C. Curry , J. Mayer , J. Meddaugh  and  J. Rogers , Any counterexample to Makienko's conjecture is an indecomposable continuum, Ergodic Theory and Dynam. Sys., 29 (2009) , 875-883.  doi: 10.1017/S014338570800059X.
      C. Curry , J. Mayer  and  E. Tymchatyn , Topology and measure of buried points in Julia sets, Fund. Math., 222 (2013) , 1-17.  doi: 10.4064/fm222-1-1.
      A. Freire , A. Lopes  and  R. Mañé , An invariant measure for rational maps, Bol. Soc. Brasil. Mat., 14 (1983) , 45-62.  doi: 10.1007/BF02584744.
      J. Hawkins , Lebesgue ergodic rational maps in parameter space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003) , 1423-1447.  doi: 10.1142/S021812740300731X.
      M. Lyubich , Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory and Dynam. Sys., 3 (1983) , 351-385.  doi: 10.1017/S0143385700002030.
      C. McMullen, Complex Dynamics and Renormalization, Princeton Univ. Press, 1994.
      J. Milnor, Dynamics in One Complex Variable (3rd ed.), Princeton Univ. Press, 2006.
      S. Morosawa , On the residual Julia sets of rational functions, Ergodic Theory and Dynam. Sys., 17 (1997) , 205-210.  doi: 10.1017/S0143385797069848.
      S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Univ. Press, 2000.
      J. Qiao , Topological complexity of Julia sets, Sci. China Ser. A, 40 (1997) , 1158-1165.  doi: 10.1007/BF02931834.
      L. Tan  and  Y. Yin , Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A, 39 (1996) , 39-47. 
  • 加载中
SHARE

Article Metrics

HTML views(349) PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return