• Previous Article
    Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies
September  2018, 38(9): 4509-4536. doi: 10.3934/dcds.2018197

On the existence of minimizers for the neo-Hookean energy in the axisymmetric setting

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile

Received  October 2017 Published  June 2018

Let $\Omega $ be a smooth bounded axisymmetric set in $\mathbb{R}^3$. In this paper we investigate the existence of minimizers of the so-called neo-Hookean energy among a class of axisymmetric maps. Due to the appearance of a critical exponent in the energy we must face a problem of lack of compactness. Indeed as shown by an example of Conti-De Lellis in [12,Section 6], a phenomenon of concentration of energy can occur preventing the strong convergence in $W^{1,2}(\Omega ,\mathbb{R}^3)$ of a minimizing sequence along with the equi-integrability of the cofactors of that sequence. We prove that this phenomenon can only take place on the axis of symmetry of the domain. Thus if we consider domains that do not contain the axis of symmetry then minimizers do exist. We also provide a partial description of the lack of compactness in terms of Cartesian currents. Then we study the case where $\Omega $ is not necessarily axisymmetric but the boundary data is affine. In that case if we do not allow cavitation (nor in the interior neither at the boundary) then the affine extension is the unique minimizer, that is, quadratic polyconvex energies are $W^{1,2}$-quasiconvex in our admissible space. At last, in the case of an axisymmetric domain not containing its symmetry axis, we obtain for the first time the existence of weak solutions of the energy-momentum equations for 3D neo-Hookean materials.

Citation: Duvan Henao, Rémy Rodiac. On the existence of minimizers for the neo-Hookean energy in the axisymmetric setting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4509-4536. doi: 10.3934/dcds.2018197
References:
[1]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1976/77), 337-4.3.  doi: 10.1007/BF00279992.  Google Scholar

[2]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557-611.  doi: 10.1098/rsta.1982.0095.  Google Scholar

[3]

J. M. Ball, Minimizers and the Euler-Lagrange equations, In Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), 195 of Lecture Notes in Phys., pages 1-4. Springer, Berlin, 1984. doi: 10.1007/3-540-12916-2_47.  Google Scholar

[4]

J. M. Ball, Progress and puzzles in nonlinear elasticity, In Poly-, Quasi- and Rank-one Convexity in Applied Mechanics, 516 of the CISM International Centre for Mechanical Sciences book series, pages 1-15. Springer, Vienna, 2010. doi: 10.1007/978-3-7091-0174-2_1.  Google Scholar

[5]

J. M. Ball and F. Murat, $W^1,p$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58 (1984), 225-253.  doi: 10.1016/0022-1236(84)90041-7.  Google Scholar

[6]

P. BaumanN. C. Owen and D. Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 119-157.  doi: 10.1016/S0294-1449(16)30269-4.  Google Scholar

[7]

H. BrezisJ.-M. Coron and E. H. Lieb, Harmonic maps with defects, Comm. Math. Phys., 107 (1986), 649-705.  doi: 10.1007/BF01205490.  Google Scholar

[8]

H. Brezis and L. Nirenberg, Degree theory and BMO. Ⅱ. Compact manifolds with boundaries, Selecta Math. (N. S.), 2 (1996), 309-368. With an appendix by the authors and Petru Mironescu. doi: 10.1007/BF01587948.  Google Scholar

[9]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.  doi: 10.1007/s002050050146.  Google Scholar

[10]

G.-Q. ChenM. Torres and W. P. Ziemer, Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math., 62 (2009), 242-304.  doi: 10.1002/cpa.20262.  Google Scholar

[11]

R. CoifmanP.-L. LionsY. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), 72 (1993), 247-286.   Google Scholar

[12]

S. Conti and C. De Lellis, Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2 (2003), 521-549.   Google Scholar

[13]

C. De Lellis and F. Ghiraldin, An extension of the identity $\textbf{Det} = \textbf{det}$, C. R. Math. Acad. Sci. Paris, 348 (2010), 973-976.  doi: 10.1016/j.crma.2010.07.019.  Google Scholar

[14]

J. Dieudonné, Treatise on Analysis. Vol. III, Academic Press, New York-London, 1972. Translated from the French by I. G. MacDonald, Pure and Applied Mathematics, Vol. 10-Ⅲ.  Google Scholar

[15]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.  Google Scholar

[16]

M. GiaquintaG. Modica and J. Souček, Cartesian currents and variational problems for mappings into spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989), 393-485 (1990).   Google Scholar

[17]

M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1998. Cartesian currents. doi: 10.1007/978-3-662-06218-0.  Google Scholar

[18]

M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations. II, volume 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1998. Variational integrals. doi: 10.1007/978-3-662-06218-0.  Google Scholar

[19]

R. HardtF.-H. Lin and C.-C. Poon, Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math., 45 (1992), 417-459.  doi: 10.1002/cpa.3160450404.  Google Scholar

[20]

D. Henao and C. Mora-Corral, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Ration. Mech. Anal., 197 (2010), 619-655.  doi: 10.1007/s00205-009-0271-4.  Google Scholar

[21]

D. Henao and C. Mora-Corral, Lusin's condition and the distributional determinant for deformations with finite energy, Adv. Calc. Var., 5 (2012), 355-409.  doi: 10.1515/acv.2011.016.  Google Scholar

[22]

F.-H. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2), 149 (1999), 785-829.  doi: 10.2307/121073.  Google Scholar

[23]

F.-H. Lin and T. Rivière, Energy quantization for harmonic maps, Duke Math. J., 111 (2002), 177-193.  doi: 10.1215/S0012-7094-02-11116-8.  Google Scholar

[24]

L. Martinazzi, A note on $n$-axially symmetric harmonic maps from $B^3$ to $S^2$ minimizing the relaxed energy, J. Funct. Anal., 261 (2011), 3099-3117.  doi: 10.1016/j.jfa.2011.07.022.  Google Scholar

[25]

D. Mucci, A variational problem involving the distributional determinant, Riv. Math. Univ. Parma (N.S.), 1 (2010), 321-345.   Google Scholar

[26]

S. Müller, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math., 412 (1990), 20-34.  doi: 10.1515/crll.1990.412.20.  Google Scholar

[27]

S. Müller, Notes for the lectures partial differential equations and modelling, http://bolzano.iam.uni-bonn.de/~zwicknagl/pdem, 2013. Google Scholar

[28]

S. MüllerT. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 217-243.  doi: 10.1016/S0294-1449(16)30193-7.  Google Scholar

[29]

S. Müller and S. J. Spector, An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal., 131 (1995), 1-66.  doi: 10.1007/BF00386070.  Google Scholar

[30]

J. Sivaloganathan and S. J. Spector, On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity, 59 (2000), 83-113.  doi: 10.1023/A:1011001113641.  Google Scholar

[31]

M. Struwe, Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.  Google Scholar

[32]

L. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, USA, 1975. Google Scholar

show all references

References:
[1]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1976/77), 337-4.3.  doi: 10.1007/BF00279992.  Google Scholar

[2]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557-611.  doi: 10.1098/rsta.1982.0095.  Google Scholar

[3]

J. M. Ball, Minimizers and the Euler-Lagrange equations, In Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), 195 of Lecture Notes in Phys., pages 1-4. Springer, Berlin, 1984. doi: 10.1007/3-540-12916-2_47.  Google Scholar

[4]

J. M. Ball, Progress and puzzles in nonlinear elasticity, In Poly-, Quasi- and Rank-one Convexity in Applied Mechanics, 516 of the CISM International Centre for Mechanical Sciences book series, pages 1-15. Springer, Vienna, 2010. doi: 10.1007/978-3-7091-0174-2_1.  Google Scholar

[5]

J. M. Ball and F. Murat, $W^1,p$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58 (1984), 225-253.  doi: 10.1016/0022-1236(84)90041-7.  Google Scholar

[6]

P. BaumanN. C. Owen and D. Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 119-157.  doi: 10.1016/S0294-1449(16)30269-4.  Google Scholar

[7]

H. BrezisJ.-M. Coron and E. H. Lieb, Harmonic maps with defects, Comm. Math. Phys., 107 (1986), 649-705.  doi: 10.1007/BF01205490.  Google Scholar

[8]

H. Brezis and L. Nirenberg, Degree theory and BMO. Ⅱ. Compact manifolds with boundaries, Selecta Math. (N. S.), 2 (1996), 309-368. With an appendix by the authors and Petru Mironescu. doi: 10.1007/BF01587948.  Google Scholar

[9]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.  doi: 10.1007/s002050050146.  Google Scholar

[10]

G.-Q. ChenM. Torres and W. P. Ziemer, Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math., 62 (2009), 242-304.  doi: 10.1002/cpa.20262.  Google Scholar

[11]

R. CoifmanP.-L. LionsY. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), 72 (1993), 247-286.   Google Scholar

[12]

S. Conti and C. De Lellis, Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2 (2003), 521-549.   Google Scholar

[13]

C. De Lellis and F. Ghiraldin, An extension of the identity $\textbf{Det} = \textbf{det}$, C. R. Math. Acad. Sci. Paris, 348 (2010), 973-976.  doi: 10.1016/j.crma.2010.07.019.  Google Scholar

[14]

J. Dieudonné, Treatise on Analysis. Vol. III, Academic Press, New York-London, 1972. Translated from the French by I. G. MacDonald, Pure and Applied Mathematics, Vol. 10-Ⅲ.  Google Scholar

[15]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.  Google Scholar

[16]

M. GiaquintaG. Modica and J. Souček, Cartesian currents and variational problems for mappings into spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989), 393-485 (1990).   Google Scholar

[17]

M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1998. Cartesian currents. doi: 10.1007/978-3-662-06218-0.  Google Scholar

[18]

M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations. II, volume 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1998. Variational integrals. doi: 10.1007/978-3-662-06218-0.  Google Scholar

[19]

R. HardtF.-H. Lin and C.-C. Poon, Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math., 45 (1992), 417-459.  doi: 10.1002/cpa.3160450404.  Google Scholar

[20]

D. Henao and C. Mora-Corral, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Ration. Mech. Anal., 197 (2010), 619-655.  doi: 10.1007/s00205-009-0271-4.  Google Scholar

[21]

D. Henao and C. Mora-Corral, Lusin's condition and the distributional determinant for deformations with finite energy, Adv. Calc. Var., 5 (2012), 355-409.  doi: 10.1515/acv.2011.016.  Google Scholar

[22]

F.-H. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2), 149 (1999), 785-829.  doi: 10.2307/121073.  Google Scholar

[23]

F.-H. Lin and T. Rivière, Energy quantization for harmonic maps, Duke Math. J., 111 (2002), 177-193.  doi: 10.1215/S0012-7094-02-11116-8.  Google Scholar

[24]

L. Martinazzi, A note on $n$-axially symmetric harmonic maps from $B^3$ to $S^2$ minimizing the relaxed energy, J. Funct. Anal., 261 (2011), 3099-3117.  doi: 10.1016/j.jfa.2011.07.022.  Google Scholar

[25]

D. Mucci, A variational problem involving the distributional determinant, Riv. Math. Univ. Parma (N.S.), 1 (2010), 321-345.   Google Scholar

[26]

S. Müller, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math., 412 (1990), 20-34.  doi: 10.1515/crll.1990.412.20.  Google Scholar

[27]

S. Müller, Notes for the lectures partial differential equations and modelling, http://bolzano.iam.uni-bonn.de/~zwicknagl/pdem, 2013. Google Scholar

[28]

S. MüllerT. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 217-243.  doi: 10.1016/S0294-1449(16)30193-7.  Google Scholar

[29]

S. Müller and S. J. Spector, An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal., 131 (1995), 1-66.  doi: 10.1007/BF00386070.  Google Scholar

[30]

J. Sivaloganathan and S. J. Spector, On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity, 59 (2000), 83-113.  doi: 10.1023/A:1011001113641.  Google Scholar

[31]

M. Struwe, Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.  Google Scholar

[32]

L. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, USA, 1975. Google Scholar

[1]

Phoebus Rosakis. Continuum surface energy from a lattice model. Networks & Heterogeneous Media, 2014, 9 (3) : 453-476. doi: 10.3934/nhm.2014.9.453

[2]

Yuan Gao, Hangjie Ji, Jian-Guo Liu, Thomas P. Witelski. A vicinal surface model for epitaxial growth with logarithmic free energy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4433-4453. doi: 10.3934/dcdsb.2018170

[3]

Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003

[4]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[5]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

[6]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[7]

Borys V. Bazaliy, Ya. B. Bazaliy, Avner Friedman, Bei Hu. Energy Considerations in a Model of Nematode Sperm Crawling. Mathematical Biosciences & Engineering, 2006, 3 (2) : 347-370. doi: 10.3934/mbe.2006.3.347

[8]

Arturo Hidalgo, Lourdes Tello. On a climatological energy balance model with continents distribution. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1503-1519. doi: 10.3934/dcds.2015.35.1503

[9]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[10]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[11]

Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic & Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049

[12]

James Walsh, Christopher Rackauckas. On the Budyko-Sellers energy balance climate model with ice line coupling. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2187-2216. doi: 10.3934/dcdsb.2015.20.2187

[13]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[14]

Marcio A. Jorge Silva, Vando Narciso, André Vicente. On a beam model related to flight structures with nonlocal energy damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3281-3298. doi: 10.3934/dcdsb.2018320

[15]

K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks & Heterogeneous Media, 2008, 3 (1) : 125-148. doi: 10.3934/nhm.2008.3.125

[16]

Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189

[17]

Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063

[18]

Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

[19]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[20]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (45)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]