Let $\Omega $ be a smooth bounded axisymmetric set in $\mathbb{R}^3$. In this paper we investigate the existence of minimizers of the so-called neo-Hookean energy among a class of axisymmetric maps. Due to the appearance of a critical exponent in the energy we must face a problem of lack of compactness. Indeed as shown by an example of Conti-De Lellis in [
Citation: |
J. M. Ball
, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1976/77)
, 337-4.3.
doi: 10.1007/BF00279992.![]() ![]() ![]() |
|
J. M. Ball
, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982)
, 557-611.
doi: 10.1098/rsta.1982.0095.![]() ![]() ![]() |
|
J. M. Ball, Minimizers and the Euler-Lagrange equations, In Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), 195 of Lecture Notes in Phys., pages 1-4. Springer, Berlin, 1984.
doi: 10.1007/3-540-12916-2_47.![]() ![]() ![]() |
|
J. M. Ball, Progress and puzzles in nonlinear elasticity, In Poly-, Quasi- and Rank-one Convexity in Applied Mechanics, 516 of the CISM International Centre for Mechanical Sciences book series, pages 1-15. Springer, Vienna, 2010.
doi: 10.1007/978-3-7091-0174-2_1.![]() ![]() |
|
J. M. Ball
and F. Murat
, $W^1,p$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58 (1984)
, 225-253.
doi: 10.1016/0022-1236(84)90041-7.![]() ![]() ![]() |
|
P. Bauman
, N. C. Owen
and D. Phillips
, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991)
, 119-157.
doi: 10.1016/S0294-1449(16)30269-4.![]() ![]() ![]() |
|
H. Brezis
, J.-M. Coron
and E. H. Lieb
, Harmonic maps with defects, Comm. Math. Phys., 107 (1986)
, 649-705.
doi: 10.1007/BF01205490.![]() ![]() ![]() |
|
H. Brezis and L. Nirenberg, Degree theory and BMO. Ⅱ. Compact manifolds with boundaries, Selecta Math. (N. S.), 2 (1996), 309-368. With an appendix by the authors and Petru Mironescu.
doi: 10.1007/BF01587948.![]() ![]() ![]() |
|
G.-Q. Chen
and H. Frid
, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999)
, 89-118.
doi: 10.1007/s002050050146.![]() ![]() ![]() |
|
G.-Q. Chen
, M. Torres
and W. P. Ziemer
, Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math., 62 (2009)
, 242-304.
doi: 10.1002/cpa.20262.![]() ![]() ![]() |
|
R. Coifman
, P.-L. Lions
, Y. Meyer
and S. Semmes
, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), 72 (1993)
, 247-286.
![]() ![]() |
|
S. Conti
and C. De Lellis
, Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2 (2003)
, 521-549.
![]() ![]() |
|
C. De Lellis
and F. Ghiraldin
, An extension of the identity $\textbf{Det} = \textbf{det}$, C. R. Math. Acad. Sci. Paris, 348 (2010)
, 973-976.
doi: 10.1016/j.crma.2010.07.019.![]() ![]() ![]() |
|
J. Dieudonné, Treatise on Analysis. Vol. III, Academic Press, New York-London, 1972. Translated from the French by I. G. MacDonald, Pure and Applied Mathematics, Vol. 10-Ⅲ.
![]() ![]() |
|
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
![]() ![]() |
|
M. Giaquinta
, G. Modica
and J. Souček
, Cartesian currents and variational problems for mappings into spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989)
, 393-485 (1990).
![]() ![]() |
|
M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1998. Cartesian currents.
doi: 10.1007/978-3-662-06218-0.![]() ![]() ![]() |
|
M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations. II, volume 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 1998. Variational integrals.
doi: 10.1007/978-3-662-06218-0.![]() ![]() ![]() |
|
R. Hardt
, F.-H. Lin
and C.-C. Poon
, Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math., 45 (1992)
, 417-459.
doi: 10.1002/cpa.3160450404.![]() ![]() ![]() |
|
D. Henao
and C. Mora-Corral
, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Ration. Mech. Anal., 197 (2010)
, 619-655.
doi: 10.1007/s00205-009-0271-4.![]() ![]() ![]() |
|
D. Henao
and C. Mora-Corral
, Lusin's condition and the distributional determinant for deformations with finite energy, Adv. Calc. Var., 5 (2012)
, 355-409.
doi: 10.1515/acv.2011.016.![]() ![]() ![]() |
|
F.-H. Lin
, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2), 149 (1999)
, 785-829.
doi: 10.2307/121073.![]() ![]() ![]() |
|
F.-H. Lin
and T. Rivière
, Energy quantization for harmonic maps, Duke Math. J., 111 (2002)
, 177-193.
doi: 10.1215/S0012-7094-02-11116-8.![]() ![]() ![]() |
|
L. Martinazzi
, A note on $n$-axially symmetric harmonic maps from $B^3$ to $S^2$ minimizing the relaxed energy, J. Funct. Anal., 261 (2011)
, 3099-3117.
doi: 10.1016/j.jfa.2011.07.022.![]() ![]() ![]() |
|
D. Mucci
, A variational problem involving the distributional determinant, Riv. Math. Univ. Parma (N.S.), 1 (2010)
, 321-345.
![]() ![]() |
|
S. Müller
, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math., 412 (1990)
, 20-34.
doi: 10.1515/crll.1990.412.20.![]() ![]() ![]() |
|
S. Müller, Notes for the lectures partial differential equations and modelling, http://bolzano.iam.uni-bonn.de/~zwicknagl/pdem, 2013.
![]() |
|
S. Müller
, T. Qi
and B. S. Yan
, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994)
, 217-243.
doi: 10.1016/S0294-1449(16)30193-7.![]() ![]() ![]() |
|
S. Müller
and S. J. Spector
, An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal., 131 (1995)
, 1-66.
doi: 10.1007/BF00386070.![]() ![]() ![]() |
|
J. Sivaloganathan
and S. J. Spector
, On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity, 59 (2000)
, 83-113.
doi: 10.1023/A:1011001113641.![]() ![]() ![]() |
|
M. Struwe,
Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.
![]() ![]() |
|
L. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, USA, 1975.
![]() |