    • Previous Article
Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms
• DCDS Home
• This Issue
• Next Article
Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity
September  2018, 38(9): 4555-4570. doi: 10.3934/dcds.2018199

## Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions

 School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539-2999, USA

Received  November 2017 Revised  May 2018 Published  June 2018

Fund Project: The research of the author was supported by U.S. National Security Agency (NSA) Grant H98230-14-1-0320

The quantization scheme in probability theory deals with finding a best approximation of a given probability distribution by a probability distribution that is supported on finitely many points. Let $P$ be a Borel probability measure on $\mathbb R$ such that $P = \frac 12 P\circ S_1^{-1}+\frac 12 P\circ S_2^{-1},$ where $S_1$ and $S_2$ are two contractive similarity mappings given by $S_1(x) = rx$ and $S_2(x) = rx+1-r$ for $0<r<\frac 12$ and $x∈ \mathbb R$. Then, $P$ is supported on the Cantor set generated by $S_1$ and $S_2$. The case $r = \frac 13$ was treated by Graf and Luschgy who gave an exact formula for the unique optimal quantization of the Cantor distribution $P$ (Math. Nachr., 183 (1997), 113-133). In this paper, we compute the precise range of $r$-values to which Graf-Luschgy formula extends.

Citation: Mrinal Kanti Roychowdhury. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4555-4570. doi: 10.3934/dcds.2018199
##### References:
  E. F. Abaya and G. L. Wise, Some remarks on the existence of optimal quantizers, Statistics & Probability Letters, 2 (1984), 349-351.  doi: 10.1016/0167-7152(84)90045-2. Google Scholar  C. P. Dettmann and M. K. Roychowdhury, Quantization for uniform distributions on equilateral triangles, Real Analysis Exchange, 42 (2017), 149-166.  doi: 10.14321/realanalexch.42.1.0149.  Google Scholar  Q. Du, V. Faber and M. Gunzburger, Centroidal voronoi tessellations: Applications and algorithms, SIAM Review, 41 (1999), 637-676.  doi: 10.1137/S0036144599352836.  Google Scholar  A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academy publishers: Boston, 1992. doi: 10.1007/978-1-4615-3626-0. Google Scholar  R. M. Gray, J. C. Kieffer and Y. Linde, Locally optimal block quantizer design, Information and Control, 45 (1980), 178-198.  doi: 10.1016/S0019-9958(80)90313-7.  Google Scholar  S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, 1730, Springer, Berlin, 2000. doi: 10.1007/BFb0103945.  Google Scholar  S. Graf and H. Luschgy, The quantization of the cantor distribution, Math. Nachr., 183 (1997), 113-133.  doi: 10.1002/mana.19971830108.  Google Scholar  R. M. Gray and D. L. Neuhoff, Quantization, IEEE Transactions on Information Theory, 44 (1998), 2325-2383.  doi: 10.1109/18.720541.  Google Scholar  A. Gyögy and T. Linder, On the structure of optimal entropy-constrained scalar quantizers, IEEE Transactions on Information Theory, 48 (2002), 416-427.  doi: 10.1109/18.978755.  Google Scholar  J. Hutchinson, Fractals and self-similarity, Indiana Univ. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar  D. Pollard, Quantization and the Method of $k$-Means, IEEE Transactions on Information Theory, 28 (1982), 199-205.  doi: 10.1109/TIT.1982.1056481.  Google Scholar  M. K. Roychowdhury, Optimal quantizers for some absolutely continuous probability measures, Real Analysis Exchange, 43 (2017), 105-136.   Google Scholar  M. K. Roychowdhury, Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets, Journal of Fractal Geometry, 4 (2017), 127-146.  doi: 10.4171/JFG/47.  Google Scholar  P. L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Transactions on Information Theory, 28 (1982), 139-149.  doi: 10.1109/TIT.1982.1056490.  Google Scholar  R. Zam, Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory, Cambridge University Press, 2014. Google Scholar

show all references

##### References:
  E. F. Abaya and G. L. Wise, Some remarks on the existence of optimal quantizers, Statistics & Probability Letters, 2 (1984), 349-351.  doi: 10.1016/0167-7152(84)90045-2. Google Scholar  C. P. Dettmann and M. K. Roychowdhury, Quantization for uniform distributions on equilateral triangles, Real Analysis Exchange, 42 (2017), 149-166.  doi: 10.14321/realanalexch.42.1.0149.  Google Scholar  Q. Du, V. Faber and M. Gunzburger, Centroidal voronoi tessellations: Applications and algorithms, SIAM Review, 41 (1999), 637-676.  doi: 10.1137/S0036144599352836.  Google Scholar  A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academy publishers: Boston, 1992. doi: 10.1007/978-1-4615-3626-0. Google Scholar  R. M. Gray, J. C. Kieffer and Y. Linde, Locally optimal block quantizer design, Information and Control, 45 (1980), 178-198.  doi: 10.1016/S0019-9958(80)90313-7.  Google Scholar  S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, 1730, Springer, Berlin, 2000. doi: 10.1007/BFb0103945.  Google Scholar  S. Graf and H. Luschgy, The quantization of the cantor distribution, Math. Nachr., 183 (1997), 113-133.  doi: 10.1002/mana.19971830108.  Google Scholar  R. M. Gray and D. L. Neuhoff, Quantization, IEEE Transactions on Information Theory, 44 (1998), 2325-2383.  doi: 10.1109/18.720541.  Google Scholar  A. Gyögy and T. Linder, On the structure of optimal entropy-constrained scalar quantizers, IEEE Transactions on Information Theory, 48 (2002), 416-427.  doi: 10.1109/18.978755.  Google Scholar  J. Hutchinson, Fractals and self-similarity, Indiana Univ. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar  D. Pollard, Quantization and the Method of $k$-Means, IEEE Transactions on Information Theory, 28 (1982), 199-205.  doi: 10.1109/TIT.1982.1056481.  Google Scholar  M. K. Roychowdhury, Optimal quantizers for some absolutely continuous probability measures, Real Analysis Exchange, 43 (2017), 105-136.   Google Scholar  M. K. Roychowdhury, Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets, Journal of Fractal Geometry, 4 (2017), 127-146.  doi: 10.4171/JFG/47.  Google Scholar  P. L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Transactions on Information Theory, 28 (1982), 139-149.  doi: 10.1109/TIT.1982.1056490.  Google Scholar  R. Zam, Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory, Cambridge University Press, 2014. Google Scholar
  James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667  Eunju Hwang, Kyung Jae Kim, Bong Dae Choi. Delay distribution and loss probability of bandwidth requests under truncated binary exponential backoff mechanism in IEEE 802.16e over Gilbert-Elliot error channel. Journal of Industrial & Management Optimization, 2009, 5 (3) : 525-540. doi: 10.3934/jimo.2009.5.525  Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185  Nicolai Haydn, Sandro Vaienti. The limiting distribution and error terms for return times of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 589-616. doi: 10.3934/dcds.2004.10.589  Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435  Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125  Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219  Alessia Marigo. Optimal traffic distribution and priority coefficients for telecommunication networks. Networks & Heterogeneous Media, 2006, 1 (2) : 315-336. doi: 10.3934/nhm.2006.1.315  Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007  Meng Wu, Jiefeng Yang. The optimal exit of staged investment when consider the posterior probability. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1105-1123. doi: 10.3934/jimo.2016064  Marcin Studniarski. Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 389-398. doi: 10.3934/naco.2011.1.389  Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2585-2611. doi: 10.3934/dcds.2016.36.2585  S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111.  Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110  Jonas Eriksson. A weight-based characterization of the set of correctable error patterns under list-of-2 decoding. Advances in Mathematics of Communications, 2007, 1 (3) : 331-356. doi: 10.3934/amc.2007.1.331  Chang-Feng Wang, Yan Han. Optimal assignment of principalship and residual distribution for cooperative R&D. Journal of Industrial & Management Optimization, 2012, 8 (1) : 127-139. doi: 10.3934/jimo.2012.8.127  Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control & Related Fields, 2018, 8 (1) : 195-215. doi: 10.3934/mcrf.2018009  Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036  Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186  Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

2018 Impact Factor: 1.143