September  2018, 38(9): 4603-4615. doi: 10.3934/dcds.2018201

Moving planes for nonlinear fractional Laplacian equation with negative powers

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China

* Corresponding author: Li Ma

Received  November 2017 Revised  April 2018 Published  June 2018

Fund Project: The research of L.Ma is partially supported by the National Natural Science Foundation of China (No. 11771124, No.11271111).

In this paper, we study symmetry properties of positive solutions to the fractional Laplace equation with negative powers on the whole space. We can use the direct method of moving planes introduced by Jarohs-Weth-Chen-Li-Li to prove one particular result below. If
$u∈ C^{1, 1}_{loc}(\mathbb{R}^{n})\cap L_{α}$
satisfies
$(-Δ)^{α/2}u(x)+u^{-β}(x) = 0, \ \ \ x∈ \mathbb{R}^n, $
with the growth/decay property
$u(x) = a|x|^{m}+o(1), \ \ as \ \ |x| \to ∞, $
where
$\frac{α}{β+1}<m<1$
,
$a>0$
is a constant, then the positive solution
$u(x)$
must be radially symmetric about some point in
$\mathbb{R}^{n}$
. Similar result is also true for Hénon type nonlinear fractional Laplace equation with negative powers.
Citation: Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201
References:
[1]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), 625-661.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9.  Google Scholar

[2]

A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366.  doi: 10.1512/iumj.2000.49.1887.  Google Scholar

[3]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[6]

W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354.   Google Scholar

[7]

W. X. ChenY. Li and R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[8]

R. Dal PassoL. Giacomelli and A. Shishkov, The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations, 26 (2001), 1509-1557.  doi: 10.1081/PDE-100107451.  Google Scholar

[9]

J. DavilaK. Wang and J. C. Wei, Qualitative analysis of rupture solutions for a MEMS problem, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 221-242.  doi: 10.1016/j.anihpc.2014.09.009.  Google Scholar

[10]

S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99, 29 pp. doi: 10.1007/s00526-016-1032-5.  Google Scholar

[11]

Y. H. Du and Z. M. Guo, Positive solutions of an elliptic equation with negative exponent: stability and critical power, J. Differential Equations, 246 (2009), 2387-2414.  doi: 10.1016/j.jde.2008.08.008.  Google Scholar

[12]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equa- tions involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1350023, 24pp. doi: 10.1142/S0219199713500235.  Google Scholar

[13]

N. Ghoussoub and Y. J. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM J. Math. Anal., 38 (2006), 1423-1449.  doi: 10.1137/050647803.  Google Scholar

[14]

Z. M. Guo and J. C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 963-994.  doi: 10.1017/S0308210505001083.  Google Scholar

[15]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Math. Pura ed Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.  Google Scholar

[16]

H. Q. Jiang and W. M. Ni, On steady states of van der Waals force driven thin film equations, European J. Appl. Math., 18 (2007), 153-180.  doi: 10.1017/S0956792507006936.  Google Scholar

[17]

R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. Anal., 154 (2000), 3-51.  doi: 10.1007/PL00004234.  Google Scholar

[18]

Y. T. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057.  doi: 10.3934/dcds.2015.35.1039.  Google Scholar

[19]

B. Y. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[20]

L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris., 348 (2010), 993-996.  doi: 10.1016/j.crma.2010.07.031.  Google Scholar

[21]

L. Ma and J. C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., 254 (2008), 1058-1087.  doi: 10.1016/j.jfa.2007.09.017.  Google Scholar

[22]

L. Ma and J. C. Wei, Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, J. Math. Pures Appl., 99 (2013), 174-186.  doi: 10.1016/j.matpur.2012.06.009.  Google Scholar

[23]

L. Ma and X. W. Xu, Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C. R. Math. Acad. Sci. Paris, 347 (2009), 805-808.  doi: 10.1016/j.crma.2009.04.017.  Google Scholar

[24]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[25]

A. Meadows, Stable and singular solutions of the equation $Δ u = \frac{1}{u}$, Indiana Univ. Math. J., 53 (2004), 1681-1703.  doi: 10.1512/iumj.2004.53.2560.  Google Scholar

[26]

M. Montenegro and E. Valdinoci, Pointwise estimates and monotonicity formulas without maximum principle, J. Convex Anal., 20 (2013), 199-220.   Google Scholar

[27]

N. Soave and E. Valdinoci, Overdetermined problems for the fractional Laplacian in exterior and annular sets, Preprint arXiv: 1412.5074. Google Scholar

[28]

X. F. Song and L. Zhao, Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds, Z. Angew. Math. Phys., 61 (2010), 655-662.  doi: 10.1007/s00033-009-0047-6.  Google Scholar

[29]

X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109.  doi: 10.1016/j.jfa.2007.03.005.  Google Scholar

show all references

References:
[1]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), 625-661.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9.  Google Scholar

[2]

A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366.  doi: 10.1512/iumj.2000.49.1887.  Google Scholar

[3]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[6]

W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354.   Google Scholar

[7]

W. X. ChenY. Li and R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[8]

R. Dal PassoL. Giacomelli and A. Shishkov, The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations, 26 (2001), 1509-1557.  doi: 10.1081/PDE-100107451.  Google Scholar

[9]

J. DavilaK. Wang and J. C. Wei, Qualitative analysis of rupture solutions for a MEMS problem, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 221-242.  doi: 10.1016/j.anihpc.2014.09.009.  Google Scholar

[10]

S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99, 29 pp. doi: 10.1007/s00526-016-1032-5.  Google Scholar

[11]

Y. H. Du and Z. M. Guo, Positive solutions of an elliptic equation with negative exponent: stability and critical power, J. Differential Equations, 246 (2009), 2387-2414.  doi: 10.1016/j.jde.2008.08.008.  Google Scholar

[12]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equa- tions involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1350023, 24pp. doi: 10.1142/S0219199713500235.  Google Scholar

[13]

N. Ghoussoub and Y. J. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM J. Math. Anal., 38 (2006), 1423-1449.  doi: 10.1137/050647803.  Google Scholar

[14]

Z. M. Guo and J. C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 963-994.  doi: 10.1017/S0308210505001083.  Google Scholar

[15]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Math. Pura ed Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.  Google Scholar

[16]

H. Q. Jiang and W. M. Ni, On steady states of van der Waals force driven thin film equations, European J. Appl. Math., 18 (2007), 153-180.  doi: 10.1017/S0956792507006936.  Google Scholar

[17]

R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. Anal., 154 (2000), 3-51.  doi: 10.1007/PL00004234.  Google Scholar

[18]

Y. T. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057.  doi: 10.3934/dcds.2015.35.1039.  Google Scholar

[19]

B. Y. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[20]

L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris., 348 (2010), 993-996.  doi: 10.1016/j.crma.2010.07.031.  Google Scholar

[21]

L. Ma and J. C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., 254 (2008), 1058-1087.  doi: 10.1016/j.jfa.2007.09.017.  Google Scholar

[22]

L. Ma and J. C. Wei, Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, J. Math. Pures Appl., 99 (2013), 174-186.  doi: 10.1016/j.matpur.2012.06.009.  Google Scholar

[23]

L. Ma and X. W. Xu, Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C. R. Math. Acad. Sci. Paris, 347 (2009), 805-808.  doi: 10.1016/j.crma.2009.04.017.  Google Scholar

[24]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[25]

A. Meadows, Stable and singular solutions of the equation $Δ u = \frac{1}{u}$, Indiana Univ. Math. J., 53 (2004), 1681-1703.  doi: 10.1512/iumj.2004.53.2560.  Google Scholar

[26]

M. Montenegro and E. Valdinoci, Pointwise estimates and monotonicity formulas without maximum principle, J. Convex Anal., 20 (2013), 199-220.   Google Scholar

[27]

N. Soave and E. Valdinoci, Overdetermined problems for the fractional Laplacian in exterior and annular sets, Preprint arXiv: 1412.5074. Google Scholar

[28]

X. F. Song and L. Zhao, Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds, Z. Angew. Math. Phys., 61 (2010), 655-662.  doi: 10.1007/s00033-009-0047-6.  Google Scholar

[29]

X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109.  doi: 10.1016/j.jfa.2007.03.005.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[9]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[10]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (236)
  • HTML views (130)
  • Cited by (7)

Other articles
by authors

[Back to Top]