September  2018, 38(9): 4617-4635. doi: 10.3934/dcds.2018202

Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions

1. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

2. 

Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany

* Corresponding author

Received  November 2017 Revised  April 2018 Published  June 2018

Fund Project: This work was funded by CRC 901 Control of self-organizing nonlinear systems: Theoretical methods and concepts of application (Project A8).

We study the Ericksen-Leslie system equipped with a quadratic free energy functional. The norm restriction of the director is incorporated by a standard relaxation technique using a double-well potential. We use the relative energy concept, often applied in the context of compressible Euler- or related systems of fluid dynamics, to prove weak-strong uniqueness of solutions. A main novelty, not only in the context of the Ericksen-Leslie model, is that the relative energy inequality is proved for a system with a nonconvex energy.

Citation: Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202
References:
[1]

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford University Press, New York, 1994.

[2]

D. BreitE. Feireisl and M. Hofmanová, Incompressible limit for compressible fluids with stochastic forcing, Arch. Rational Mech. Anal., 222 (2016), 895-926.  doi: 10.1007/s00205-016-1014-y.

[3]

C. CavaterraE. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen—Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.  doi: 10.1016/j.jde.2013.03.009.

[4]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.

[5]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.

[6]

M. Dai, Existence of regular solutions to an Ericksen—Leslie model of the liquid crystal system, Commun. Math. Sci., 13 (2015), 1711-1740.  doi: 10.4310/CMS.2015.v13.n7.a4.

[7]

M. DaiJ. Qing and M. Schonbek, Regularity of solutions to the liquid crystals systems in $\mathbb R^2$ and $\mathbb R^3$, Nonlinearity, 25 (2012), 513-532.  doi: 10.1088/0951-7715/25/2/513.

[8]

J. Diestel and J. J. Uhl, Jr. Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.

[9]

E. Emmrich and R. Lasarzik, Existence of weak solutions to the Ericksen-Leslie model for a general class of free energies, arXiv e-prints, 1711.10277, 2017.

[10]

J. L. Ericksen, Conservation laws for liquid crystals, J. Rheol., 5 (1961), 23-34.  doi: 10.1122/1.548883.

[11]

E. Feireisl, Relative entropies in thermodynamics of complete fluid systems, Discrete Contin. Dyn. Syst., 32 (2012), 3059-3080.  doi: 10.3934/dcds.2012.32.3059.

[12]

E. Feireisl, Relative entropies, dissipative solutions, and singular limits of complete fluid systems, In Hyperbolic Problems: Theory, Numerics, Applications, volume 8 of AIMS on Applied Mathematics, pages 11-27. AIMS, Springfield, USA, 2014.

[13]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier—Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.

[14]

E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier—Stokes—Fourier system, Arch. Ration. Mech. Anal., 204 (2012), 683-706.  doi: 10.1007/s00205-011-0490-3.

[15]

E. FeireislA. Novotný and Y. Sun, Suitable weak solutions to the Navier—Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611-631.  doi: 10.1512/iumj.2011.60.4406.

[16]

J. Fischer, A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier—Stokes equation, SIAM J. Numer. Anal., 53 (2015), 2178-2205.  doi: 10.1137/140966654.

[17]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen, Akademie-Verlag, Berlin, 1974.

[18]

R. Lasarzik, Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy, arXiv: 1711.04638, Nov. 2017.

[19]

R. Lasarzik, Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy, arXiv: 1711.03371, Nov. 2017.

[20]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.

[21]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.

[22]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen—Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.  doi: 10.1007/s002050000102.

[23]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, The Clarendon Press, New York, 1996.

[24]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[25]

C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.

[26]

G. Prodi, Un teorema di unicità per le equazioni di Navier—Stokes, Ann. Mat. Pura Appl.(4), 48 (1959), 173-182.  doi: 10.1007/BF02410664.

[27]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.

[28]

J. Serrin, On the interior regularity of weak solutions of the Navier—Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.

[29]

Y.-F. YangC. Dou and Q. Ju, Weak-strong uniqueness property for the compressible flow of liquid crystals, J. Differential Equations, 255 (2013), 1233-1253.  doi: 10.1016/j.jde.2013.05.011.

[30]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

[31]

J.-H. Zhao and Q. Liu, Weak-strong uniqueness of hydrodynamic flow of nematic liquid crystals, Electron. J. Differential Equations, 2012 (2012), 1-16. 

show all references

References:
[1]

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford University Press, New York, 1994.

[2]

D. BreitE. Feireisl and M. Hofmanová, Incompressible limit for compressible fluids with stochastic forcing, Arch. Rational Mech. Anal., 222 (2016), 895-926.  doi: 10.1007/s00205-016-1014-y.

[3]

C. CavaterraE. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen—Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.  doi: 10.1016/j.jde.2013.03.009.

[4]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.

[5]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.

[6]

M. Dai, Existence of regular solutions to an Ericksen—Leslie model of the liquid crystal system, Commun. Math. Sci., 13 (2015), 1711-1740.  doi: 10.4310/CMS.2015.v13.n7.a4.

[7]

M. DaiJ. Qing and M. Schonbek, Regularity of solutions to the liquid crystals systems in $\mathbb R^2$ and $\mathbb R^3$, Nonlinearity, 25 (2012), 513-532.  doi: 10.1088/0951-7715/25/2/513.

[8]

J. Diestel and J. J. Uhl, Jr. Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.

[9]

E. Emmrich and R. Lasarzik, Existence of weak solutions to the Ericksen-Leslie model for a general class of free energies, arXiv e-prints, 1711.10277, 2017.

[10]

J. L. Ericksen, Conservation laws for liquid crystals, J. Rheol., 5 (1961), 23-34.  doi: 10.1122/1.548883.

[11]

E. Feireisl, Relative entropies in thermodynamics of complete fluid systems, Discrete Contin. Dyn. Syst., 32 (2012), 3059-3080.  doi: 10.3934/dcds.2012.32.3059.

[12]

E. Feireisl, Relative entropies, dissipative solutions, and singular limits of complete fluid systems, In Hyperbolic Problems: Theory, Numerics, Applications, volume 8 of AIMS on Applied Mathematics, pages 11-27. AIMS, Springfield, USA, 2014.

[13]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier—Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.

[14]

E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier—Stokes—Fourier system, Arch. Ration. Mech. Anal., 204 (2012), 683-706.  doi: 10.1007/s00205-011-0490-3.

[15]

E. FeireislA. Novotný and Y. Sun, Suitable weak solutions to the Navier—Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611-631.  doi: 10.1512/iumj.2011.60.4406.

[16]

J. Fischer, A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier—Stokes equation, SIAM J. Numer. Anal., 53 (2015), 2178-2205.  doi: 10.1137/140966654.

[17]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen, Akademie-Verlag, Berlin, 1974.

[18]

R. Lasarzik, Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy, arXiv: 1711.04638, Nov. 2017.

[19]

R. Lasarzik, Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy, arXiv: 1711.03371, Nov. 2017.

[20]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.

[21]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.

[22]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen—Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.  doi: 10.1007/s002050000102.

[23]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, The Clarendon Press, New York, 1996.

[24]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[25]

C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.

[26]

G. Prodi, Un teorema di unicità per le equazioni di Navier—Stokes, Ann. Mat. Pura Appl.(4), 48 (1959), 173-182.  doi: 10.1007/BF02410664.

[27]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.

[28]

J. Serrin, On the interior regularity of weak solutions of the Navier—Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.

[29]

Y.-F. YangC. Dou and Q. Ju, Weak-strong uniqueness property for the compressible flow of liquid crystals, J. Differential Equations, 255 (2013), 1233-1253.  doi: 10.1016/j.jde.2013.05.011.

[30]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

[31]

J.-H. Zhao and Q. Liu, Weak-strong uniqueness of hydrodynamic flow of nematic liquid crystals, Electron. J. Differential Equations, 2012 (2012), 1-16. 

[1]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[2]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[3]

Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181

[4]

Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127

[5]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[6]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[7]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[8]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[9]

Hengrong Du, Changyou Wang. Global weak solutions to the stochastic Ericksen–Leslie system in dimension two. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2175-2197. doi: 10.3934/dcds.2021187

[10]

Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240

[11]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[12]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4397-4419. doi: 10.3934/dcds.2021041

[13]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[14]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[15]

Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075

[16]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[17]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[18]

Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345

[19]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[20]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (301)
  • HTML views (1277)
  • Cited by (2)

Other articles
by authors

[Back to Top]