In this paper, we investigate a hydrodynamic system that models the dynamics of incompressible magneto-viscoelastic flows. First, we prove the local well-posedness of the initial boundary value problem in the periodic domain. Then we establish a blow-up criterion in terms of the temporal integral of the maximum norm of the velocity gradient. Finally, an analog of the Beale-Kato-Majda criterion is derived.
| Citation: |
J. Beale
, T. Kato
and A. Majda
, Remarks on the breakdown of smooth solutions for the 3-D Euler equation, Comm. Math. Phys., 94 (1984)
, 61-66.
doi: 10.1007/BF01212349.
|
|
B. Benešová, J. Forster, C. Liu and A. Schlömerkemper, Existence of weak solutions to an evolutionary model for magnetoelasticity, arXiv: 1608.02992.
|
|
B. Benešová
, J. Forster
, C. García-Cervera
, C. Liu
and A. Schlömerkemper
, Analysis of the flow of magnetoelastic materials, PAMM, 16 (2016)
, 663-664.
|
|
C. Cavaterra
, E. Rocca
and H. Wu
, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013)
, 24-57.
doi: 10.1016/j.jde.2013.03.009.
|
|
J. Chemin
and N. Masmoudi
, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001)
, 84-112.
doi: 10.1137/S0036141099359317.
|
|
Y. Chen
and P. Zhang
, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006)
, 1793-1810.
doi: 10.1080/03605300600858960.
|
|
Z.-F. Feng
, C.-J. Zhu
and R.-Z. Zi
, Blow-up criterion for the incompressible viscoelastic flows, J. Funct. Anal., 272 (2017)
, 3742-3762.
doi: 10.1016/j.jfa.2016.10.024.
|
|
J. Forster, Variational Approach to the Modeling and Analysis of Magnetoelastic Materials, Ph. D thesis, University of Würzburg, 2016.
|
|
M. Grasselli
and H. Wu
, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45 (2013)
, 965-1002.
doi: 10.1137/120866476.
|
|
X.-P. Hu
and R. Hynd
, A blowup criterion for ideal viscoelastic flow, J. Math. Fluid Mech., 15 (2013)
, 431-437.
doi: 10.1007/s00021-012-0124-z.
|
|
X.-P. Hu
and F.-H. Lin
, Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Comm. Pure Appl. Math., 69 (2016)
, 372-404.
doi: 10.1002/cpa.21561.
|
|
X.-P. Hu
and H. Wu
, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015)
, 3437-3461.
doi: 10.3934/dcds.2015.35.3437.
|
|
Y. Hyon
, D.-Y. Kwak
and C. Liu
, Energetic variational approach in complex fluids: Maximum dissipation principle, Discrete Contin. Dyn. Syst., 26 (2010)
, 1291-1304.
doi: 10.3934/dcds.2010.26.1291.
|
|
T. Kato
and G. Ponce
, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988)
, 891-907.
doi: 10.1002/cpa.3160410704.
|
|
Z. Lei
, C. Liu
and Y. Zhou
, Global solutions for incompressible viscoelastic fluids, Arch. Rational Mech. Anal., 188 (2008)
, 371-398.
doi: 10.1007/s00205-007-0089-x.
|
|
Z. Lei
and Y. Zhou
, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005)
, 797-814.
doi: 10.1137/040618813.
|
|
T.-T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM: Research in Applied Mathematics, 32. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
|
|
F.-H. Lin
, Some analytical issues for elastic complex fluids, Comm. Pure Appl. Math., 65 (2012)
, 893-919.
doi: 10.1002/cpa.21402.
|
|
F.-H. Lin
and C. Liu
, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995)
, 501-537.
doi: 10.1002/cpa.3160480503.
|
|
F.-H. Lin
, C. Liu
and P. Zhang
, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005)
, 1437-1471.
doi: 10.1002/cpa.20074.
|
|
F.-H. Lin and C.-Y. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130361, 18pp.
|
|
F.-H. Lin
and P. Zhang
, On the initial boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008)
, 539-558.
doi: 10.1002/cpa.20219.
|
|
C. Liu
and N. J. Walkington
, An Eulerian description of fluids containing visco-hyperelastic particles, Arch. Ration Mech. Anal., 159 (2001)
, 229-252.
doi: 10.1007/s002050100158.
|
|
Q. Liu
and S.-B. Cui
, Regularity of solutions to 3-D nematic liquid crystal flows, Electron. J. Differential Equations, 173 (2010)
, 1-5.
|
|
Q. Liu
, J.-H. Zhao
and S.-B. Cui
, Logarithmically improved BKM's criterion for the 3D nematic liquid crystal flows, Nonlinear Anal., 75 (2012)
, 4942-4949.
doi: 10.1016/j.na.2012.04.009.
|
|
N. Masmoudi
, P. Zhang
and Z.-F. Zhang
, Global well-posedness for 2D polymeric fluid models and growth estimate, Phys. D, 237 (2008)
, 1663-1675.
doi: 10.1016/j.physd.2008.03.020.
|
|
A. Schlömerkemper and J. Žabensky, Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows, arXiv: 1703.07858.
|
|
H. Wu
, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010)
, 379-396.
doi: 10.3934/dcds.2010.26.379.
|
|
B.-Q. Yuan
, Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow, Discrete Contin. Dyn. Syst., 33 (2013)
, 2211-2219.
doi: 10.3934/dcds.2013.33.2211.
|
|
B.-Q. Yuan
and R. Li
, The blowup criterion of a smooth solution to the incompressible viscoelastic flow, J. Math. Anal. Appl., 406 (2013)
, 158-164.
doi: 10.1016/j.jmaa.2013.04.055.
|
|
S. Zheng, Nonlinear Evolution Equations, Pitman Ser. Monogr. and Surv. on Pure and Appl. Math., 133, Chapman & Hall/CRC, Boca Raton, FL 2004.
doi: 10.1201/9780203492222.
|