\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local well-posedness and blow-up criteria of magneto-viscoelastic flows

  • * Corresponding author: Wenjing Zhao

    * Corresponding author: Wenjing Zhao
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate a hydrodynamic system that models the dynamics of incompressible magneto-viscoelastic flows. First, we prove the local well-posedness of the initial boundary value problem in the periodic domain. Then we establish a blow-up criterion in terms of the temporal integral of the maximum norm of the velocity gradient. Finally, an analog of the Beale-Kato-Majda criterion is derived.

    Mathematics Subject Classification: Primary: 35A01, 35B44; Secondary: 76A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   J. Beale , T. Kato  and  A. Majda , Remarks on the breakdown of smooth solutions for the 3-D Euler equation, Comm. Math. Phys., 94 (1984) , 61-66.  doi: 10.1007/BF01212349.
      B. Benešová, J. Forster, C. Liu and A. Schlömerkemper, Existence of weak solutions to an evolutionary model for magnetoelasticity, arXiv: 1608.02992.
      B. Benešová , J. Forster , C. García-Cervera , C. Liu  and  A. Schlömerkemper , Analysis of the flow of magnetoelastic materials, PAMM, 16 (2016) , 663-664. 
      C. Cavaterra , E. Rocca  and  H. Wu , Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013) , 24-57.  doi: 10.1016/j.jde.2013.03.009.
      J. Chemin  and  N. Masmoudi , About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001) , 84-112.  doi: 10.1137/S0036141099359317.
      Y. Chen  and  P. Zhang , The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006) , 1793-1810.  doi: 10.1080/03605300600858960.
      Z.-F. Feng , C.-J. Zhu  and  R.-Z. Zi , Blow-up criterion for the incompressible viscoelastic flows, J. Funct. Anal., 272 (2017) , 3742-3762.  doi: 10.1016/j.jfa.2016.10.024.
      J. Forster, Variational Approach to the Modeling and Analysis of Magnetoelastic Materials, Ph. D thesis, University of Würzburg, 2016.
      M. Grasselli  and  H. Wu , Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45 (2013) , 965-1002.  doi: 10.1137/120866476.
      X.-P. Hu  and  R. Hynd , A blowup criterion for ideal viscoelastic flow, J. Math. Fluid Mech., 15 (2013) , 431-437.  doi: 10.1007/s00021-012-0124-z.
      X.-P. Hu  and  F.-H. Lin , Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Comm. Pure Appl. Math., 69 (2016) , 372-404.  doi: 10.1002/cpa.21561.
      X.-P. Hu  and  H. Wu , Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015) , 3437-3461.  doi: 10.3934/dcds.2015.35.3437.
      Y. Hyon , D.-Y. Kwak  and  C. Liu , Energetic variational approach in complex fluids: Maximum dissipation principle, Discrete Contin. Dyn. Syst., 26 (2010) , 1291-1304.  doi: 10.3934/dcds.2010.26.1291.
      T. Kato  and  G. Ponce , Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988) , 891-907.  doi: 10.1002/cpa.3160410704.
      Z. Lei , C. Liu  and  Y. Zhou , Global solutions for incompressible viscoelastic fluids, Arch. Rational Mech. Anal., 188 (2008) , 371-398.  doi: 10.1007/s00205-007-0089-x.
      Z. Lei  and  Y. Zhou , Global existence of classical solutions for 2D Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005) , 797-814.  doi: 10.1137/040618813.
      T.-T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM: Research in Applied Mathematics, 32. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
      F.-H. Lin , Some analytical issues for elastic complex fluids, Comm. Pure Appl. Math., 65 (2012) , 893-919.  doi: 10.1002/cpa.21402.
      F.-H. Lin  and  C. Liu , Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995) , 501-537.  doi: 10.1002/cpa.3160480503.
      F.-H. Lin , C. Liu  and  P. Zhang , On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005) , 1437-1471.  doi: 10.1002/cpa.20074.
      F.-H. Lin and C.-Y. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130361, 18pp.
      F.-H. Lin  and  P. Zhang , On the initial boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008) , 539-558.  doi: 10.1002/cpa.20219.
      C. Liu  and  N. J. Walkington , An Eulerian description of fluids containing visco-hyperelastic particles, Arch. Ration Mech. Anal., 159 (2001) , 229-252.  doi: 10.1007/s002050100158.
      Q. Liu  and  S.-B. Cui , Regularity of solutions to 3-D nematic liquid crystal flows, Electron. J. Differential Equations, 173 (2010) , 1-5. 
      Q. Liu , J.-H. Zhao  and  S.-B. Cui , Logarithmically improved BKM's criterion for the 3D nematic liquid crystal flows, Nonlinear Anal., 75 (2012) , 4942-4949.  doi: 10.1016/j.na.2012.04.009.
      N. Masmoudi , P. Zhang  and  Z.-F. Zhang , Global well-posedness for 2D polymeric fluid models and growth estimate, Phys. D, 237 (2008) , 1663-1675.  doi: 10.1016/j.physd.2008.03.020.
      A. Schlömerkemper and J. Žabensky, Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows, arXiv: 1703.07858.
      H. Wu , Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010) , 379-396.  doi: 10.3934/dcds.2010.26.379.
      B.-Q. Yuan , Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow, Discrete Contin. Dyn. Syst., 33 (2013) , 2211-2219.  doi: 10.3934/dcds.2013.33.2211.
      B.-Q. Yuan  and  R. Li , The blowup criterion of a smooth solution to the incompressible viscoelastic flow, J. Math. Anal. Appl., 406 (2013) , 158-164.  doi: 10.1016/j.jmaa.2013.04.055.
      S. Zheng, Nonlinear Evolution Equations, Pitman Ser. Monogr. and Surv. on Pure and Appl. Math., 133, Chapman & Hall/CRC, Boca Raton, FL 2004. doi: 10.1201/9780203492222.
  • 加载中
SHARE

Article Metrics

HTML views(3367) PDF downloads(368) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return