-
Previous Article
Periodic solutions of second order equations with asymptotical non-resonance
- DCDS Home
- This Issue
-
Next Article
Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects
Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential
1. | Department of Mathematics, Queens College of the City University of New York (CUNY), Flushing, NY 11367-1597, USA |
2. | Department of Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA |
3. | School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
We study the convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Even without uniformly bounded distortion in this case, which makes the study much harder, we are still able to obtain a very nice estimation of the convergence speed under a certain quasi-gap condition.
References:
[1] |
V. Baladi,
Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[2] |
R. Bowen,
Equilibrium States And the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math, Vol. 470 (1975), Springer, Berlin. |
[3] |
A. Fan,
A proof of the Ruelle theorem, Reviews Math. Phys., 7 (1995), 1241-1247.
doi: 10.1142/S0129055X95000451. |
[4] |
A. Fan and Y. Jiang,
On Ruelle-Perron-Frobenius operators. Ⅰ. Ruelle theorem, Commun. Math. Phys., 223 (2001), 125-141.
doi: 10.1007/s002200100538. |
[5] |
A. Fan and Y. Jiang,
On Ruelle-Perron-Frobenius operators Ⅱ. Convergence speeds, Commun. Math. Phys., 223 (2001), 143-159.
doi: 10.1007/s002200100539. |
[6] |
A. Fan and M. Pollicott,
Non-homogeneous equilibrium states and convergence speeds of averaging operators, Math. Proc. Cambridge Philos. Soc., 129 (2000), 99-115.
doi: 10.1017/S0305004100004485. |
[7] |
P. Ferrero and B. Schmitt, Ruelle's Perron-Frobenius theorem and projective metrics. Coll. Math. Soc., János Bolyai, 27 (1979), 333–336 |
[8] |
H. Hu,
Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergod. Th. & Dynam. Sys., 24 (2004), 495-524.
doi: 10.1017/S0143385703000671. |
[9] |
Y. Jiang,
A Proof of existence and simplicity of a maximal eigenvalue for Ruelle-Perron-Frobenius operators, Lett. Math. Phys., 48 (1999), 211-219.
doi: 10.1023/A:1007595323704. |
[10] |
Y. Jiang, Nanjing Lecture Notes In Dynamical Systems. Part One: Transfer Operators in Thermodynamical Formalism. FIM Preprint Series, ETH-Zurich, June 2000. |
[11] |
Y. Jiang and V. Maume-Deschamps, RPF operators for non-Hölder potentials on an arbitrary metric space. Unpublished Note, 1999. |
[12] |
Y. Jiang and Y. Ye,
Ruelle operator theorem for non-expansive systems, Ergod. Th. and Dynam. Sys., 30 (2010), 469-487.
doi: 10.1017/S014338570900025X. |
[13] |
K. Lau and Y. Ye,
Ruelle operator with nonexpansive IFS, Studia Math., 148 (2001), 143-169.
doi: 10.4064/sm148-2-4. |
[14] |
C. Liverani,
Decay of correlations, Ann. Math., 142 (1995), 239-301.
doi: 10.2307/2118636. |
[15] |
D. Ruelle,
Statistical mechanics of a one-dimensional lattice gas, Commun. Math. Phys., 9 (1968), 267-278.
doi: 10.1007/BF01654281. |
[16] |
D. Ruelle,
A measure associated with Axiom A attractors, Am. J. Math., 98 (1976), 619-654.
doi: 10.2307/2373810. |
[17] |
P. Walters,
Ruelle's operator theorem and g-measure, Trans. Amer. Math. Soc., 214 (1975), 375-387.
doi: 10.2307/1997113. |
[18] |
P. Walters,
Convergence of the Ruelle operator for a function satisfying Bowen's condition, Trans. Amer. Math. Soc., 353 (2001), 327-347.
doi: 10.1090/S0002-9947-00-02656-8. |
[19] |
P. Walters,
An Introduction to Ergodic Theory, Springer-Verlag, 1982. |
[20] |
Y. Ye,
Ruelle operator with weakly contractive iterated function systems, Ergod. Th. and Dynam. Sys., 33 (2013), 1265-1290.
doi: 10.1017/S0143385712000211. |
[21] |
Y. Ye,
Multifractal analysis of non-uniformly contracting iterated function systems, Nonlinearity, 30 (2017), 1708-1733.
doi: 10.1088/1361-6544/aa639e. |
show all references
References:
[1] |
V. Baladi,
Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[2] |
R. Bowen,
Equilibrium States And the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math, Vol. 470 (1975), Springer, Berlin. |
[3] |
A. Fan,
A proof of the Ruelle theorem, Reviews Math. Phys., 7 (1995), 1241-1247.
doi: 10.1142/S0129055X95000451. |
[4] |
A. Fan and Y. Jiang,
On Ruelle-Perron-Frobenius operators. Ⅰ. Ruelle theorem, Commun. Math. Phys., 223 (2001), 125-141.
doi: 10.1007/s002200100538. |
[5] |
A. Fan and Y. Jiang,
On Ruelle-Perron-Frobenius operators Ⅱ. Convergence speeds, Commun. Math. Phys., 223 (2001), 143-159.
doi: 10.1007/s002200100539. |
[6] |
A. Fan and M. Pollicott,
Non-homogeneous equilibrium states and convergence speeds of averaging operators, Math. Proc. Cambridge Philos. Soc., 129 (2000), 99-115.
doi: 10.1017/S0305004100004485. |
[7] |
P. Ferrero and B. Schmitt, Ruelle's Perron-Frobenius theorem and projective metrics. Coll. Math. Soc., János Bolyai, 27 (1979), 333–336 |
[8] |
H. Hu,
Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergod. Th. & Dynam. Sys., 24 (2004), 495-524.
doi: 10.1017/S0143385703000671. |
[9] |
Y. Jiang,
A Proof of existence and simplicity of a maximal eigenvalue for Ruelle-Perron-Frobenius operators, Lett. Math. Phys., 48 (1999), 211-219.
doi: 10.1023/A:1007595323704. |
[10] |
Y. Jiang, Nanjing Lecture Notes In Dynamical Systems. Part One: Transfer Operators in Thermodynamical Formalism. FIM Preprint Series, ETH-Zurich, June 2000. |
[11] |
Y. Jiang and V. Maume-Deschamps, RPF operators for non-Hölder potentials on an arbitrary metric space. Unpublished Note, 1999. |
[12] |
Y. Jiang and Y. Ye,
Ruelle operator theorem for non-expansive systems, Ergod. Th. and Dynam. Sys., 30 (2010), 469-487.
doi: 10.1017/S014338570900025X. |
[13] |
K. Lau and Y. Ye,
Ruelle operator with nonexpansive IFS, Studia Math., 148 (2001), 143-169.
doi: 10.4064/sm148-2-4. |
[14] |
C. Liverani,
Decay of correlations, Ann. Math., 142 (1995), 239-301.
doi: 10.2307/2118636. |
[15] |
D. Ruelle,
Statistical mechanics of a one-dimensional lattice gas, Commun. Math. Phys., 9 (1968), 267-278.
doi: 10.1007/BF01654281. |
[16] |
D. Ruelle,
A measure associated with Axiom A attractors, Am. J. Math., 98 (1976), 619-654.
doi: 10.2307/2373810. |
[17] |
P. Walters,
Ruelle's operator theorem and g-measure, Trans. Amer. Math. Soc., 214 (1975), 375-387.
doi: 10.2307/1997113. |
[18] |
P. Walters,
Convergence of the Ruelle operator for a function satisfying Bowen's condition, Trans. Amer. Math. Soc., 353 (2001), 327-347.
doi: 10.1090/S0002-9947-00-02656-8. |
[19] |
P. Walters,
An Introduction to Ergodic Theory, Springer-Verlag, 1982. |
[20] |
Y. Ye,
Ruelle operator with weakly contractive iterated function systems, Ergod. Th. and Dynam. Sys., 33 (2013), 1265-1290.
doi: 10.1017/S0143385712000211. |
[21] |
Y. Ye,
Multifractal analysis of non-uniformly contracting iterated function systems, Nonlinearity, 30 (2017), 1708-1733.
doi: 10.1088/1361-6544/aa639e. |
[1] |
Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003 |
[2] |
Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773 |
[3] |
Leandro Cioletti, Artur O. Lopes, Manuel Stadlbauer. Ruelle operator for continuous potentials and DLR-Gibbs measures. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4625-4652. doi: 10.3934/dcds.2020195 |
[4] |
Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264 |
[5] |
Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015 |
[6] |
Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457 |
[7] |
Yuan-Ling Ye. Non-uniformly expanding dynamical systems: Multi-dimension. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2511-2553. doi: 10.3934/dcds.2019106 |
[8] |
Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007 |
[9] |
Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007 |
[10] |
Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016 |
[11] |
Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453 |
[12] |
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521 |
[13] |
José F. Alves. Non-uniformly expanding dynamics: Stability from a probabilistic viewpoint. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 363-375. doi: 10.3934/dcds.2001.7.363 |
[14] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[15] |
Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009 |
[16] |
Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119 |
[17] |
Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112 |
[18] |
Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077 |
[19] |
Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057 |
[20] |
Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]