In this paper, we first establish some sufficient conditions for the existence and construction of a random exponential attractor for a continuous cocycle on a separable Banach space. Then we mainly consider the random attractor and random exponential attractor for stochastic non-autonomous damped wave equation driven by linear multiplicative white noise with small coefficient when the nonlinearity is cubic. First step, we prove the existence of a random attractor for the cocycle associated with the considered system by carefully decomposing the solutions of system in two different modes and estimating the bounds of solutions. Second step, we consider an upper semicontinuity of random attractors as the coefficient of random term tends zero. Third step, we show the regularity of random attractor in a higher regular space through a recurrence method. Fourth step, we prove the existence of a random exponential attractor for the considered system, which implies the finiteness of fractal dimension of random attractor. Finally we remark that the stochastic non-autonomous damped cubic wave equation driven by additive white noise also has a random exponential attractor.
Citation: |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
|
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.
![]() ![]() |
|
F. Balibrea
, T. Caraballo
, P. E. Kloeden
and J. Valero
, Recent developments in dynamical systems: Three perspectives, Inter. J. Bifur. Chaos, 20 (2010)
, 2591-2636.
doi: 10.1142/S0218127410027246.![]() ![]() ![]() |
|
P. W. Bates
, K. Lu
and B. Wang
, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009)
, 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
|
M. D. Blair
, H. F. Smith
and C. D. Sogge
, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H.Poincaré Anal. Non Lineaire, 26 (2009)
, 1817-1829.
doi: 10.1016/j.anihpc.2008.12.004.![]() ![]() ![]() |
|
T. Caraballo
, J. A. Langa
and J. C. Robinson
, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dyn. Syst., 6 (2000)
, 875-892.
doi: 10.3934/dcds.2000.6.875.![]() ![]() ![]() |
|
T. Caraballo
, P. E. Kloeden
and B. Schmalfuss
, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50 (2004)
, 183-207.
doi: 10.1007/s00245-004-0802-1.![]() ![]() ![]() |
|
R. Carmona
and D. Nualart
, Random nonlinear wave equations:Smoothness of the solutions, Proba. Theory Relat. Fields, 79 (1988)
, 469-508.
doi: 10.1007/BF00318783.![]() ![]() ![]() |
|
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.
![]() ![]() |
|
I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, New York, 2002.
doi: 10.1007/b83277.![]() ![]() ![]() |
|
H. Crauel
and F. Flandoli
, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994)
, 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
|
H. Crauel
and F. Flandoli
, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998)
, 449-474.
doi: 10.1023/A:1022605313961.![]() ![]() ![]() |
|
H. Crauel
, A. Debussche
and F. Flandoli
, Random attractors, J. Dyn. Diff. Eqns., 9 (1997)
, 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
|
A. Carvalho
and S. Sonner
, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Comm. Pure Appl. Anal., 12 (2013)
, 3047-3071.
doi: 10.3934/cpaa.2013.12.3047.![]() ![]() ![]() |
|
A. Carvalho
and S. Sonner
, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Comm. Pure Appl. Anal., 13 (2014)
, 1141-1165.
doi: 10.3934/cpaa.2014.13.1141.![]() ![]() ![]() |
|
R. Czaja
and M. Efendiev
, Pullback exponential attractors for nonautonomous equations Part Ⅰ: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011)
, 748-765.
doi: 10.1016/j.jmaa.2011.03.053.![]() ![]() ![]() |
|
R. Czaja
and M. Efendiev
, Pullback exponential attractors for nonautonomous equations Part Ⅱ: Applications to reaction-diffusion systems, J. Math. Anal. Appl., 381 (2011)
, 766-780.
doi: 10.1016/j.jmaa.2011.03.052.![]() ![]() ![]() |
|
A. Debussche
, On the finite dimensionality of random attractors, Stochastic Anal. Appl., 15 (1997)
, 473-491.
doi: 10.1080/07362999708809490.![]() ![]() ![]() |
|
A. Debussche
, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77 (1998)
, 967-988.
doi: 10.1016/S0021-7824(99)80001-4.![]() ![]() ![]() |
|
M. Efendiev
, Y. Yamamoto
and A. Yagi
, Exponential attractors for non-autonomous dissipative system, J. Math. Soc. Japan, 63 (2011)
, 647-673.
doi: 10.2969/jmsj/06320647.![]() ![]() ![]() |
|
X. Fan
, Random attractor for a damped sine-Gordon equation with white noise, Pacific J. Math., 216 (2004)
, 63-76.
doi: 10.2140/pjm.2004.216.63.![]() ![]() ![]() |
|
X. Fan
, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008)
, 421-437.
doi: 10.1142/S0129167X08004741.![]() ![]() ![]() |
|
X. Fan
, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006)
, 767-793.
doi: 10.1080/07362990600751860.![]() ![]() ![]() |
|
E. Feireisl
and E. Zuazua
, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent, Commun.Partial Differential Equations, 18 (1993)
, 1539-1555.
doi: 10.1080/03605309308820985.![]() ![]() ![]() |
|
C. Foias
and E. Olson
, Finite fractal dimension and Holder-Lipschitz parametrization, Indiana Univ. Math. J., 45 (1996)
, 603-616.
doi: 10.1512/iumj.1996.45.1326.![]() ![]() ![]() |
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
doi: 10.1007/978-3-642-86458-2_14.![]() ![]() ![]() |
|
Y. Huang
, Y. Zhao
and Z. Yin
, On the dimension of the global attractor for a damped semilinear wave equation with critical exponent, J. Math. Phys., 41 (2000)
, 4957-4966.
doi: 10.1063/1.533386.![]() ![]() ![]() |
|
P. Imkeller
and B. Schmalfuss
, The conjugacy of stochastic and random differential equations and the existence of global attractors, J. Dynam. Differential Equations, 13 (2001)
, 215-249.
doi: 10.1023/A:1016673307045.![]() ![]() ![]() |
|
T. Jordan
, M. Pollicott
and K. Simon
, Hausdorff dimension for randomly perturbed self affine attractors, Commun. Math. Phys., 270 (2006)
, 519-544.
doi: 10.1007/s00220-006-0161-7.![]() ![]() ![]() |
|
Y. Kifer
, Attractors via random perturbations, Commun. Math. Phys., 121 (1989)
, 445-455.
doi: 10.1007/BF01217733.![]() ![]() ![]() |
|
S. Kuksin
and A. Shirikyan
, Stochastic dissipative PDE's and Gibbs measures, Commun. Math. Phys., 213 (2000)
, 291-330.
doi: 10.1007/s002200000237.![]() ![]() ![]() |
|
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511569418.![]() ![]() ![]() |
|
J. A. Langa
, Finite-dimensional limiting dynamics of random dynamical systems, Dyn. Syst., 18 (2003)
, 57-68.
doi: 10.1080/1468936031000080812.![]() ![]() ![]() |
|
J. A. Langa
and J. C. Robinson
, Fractal dimension of a random invariant set, J. Math. Pures Appl., 85 (2006)
, 269-294.
doi: 10.1016/j.matpur.2005.08.001.![]() ![]() ![]() |
|
J. A. Langa
, A. Miranville
and J. Real
, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010)
, 1329-1357.
doi: 10.3934/dcds.2010.26.1329.![]() ![]() ![]() |
|
H. Li
, Y. You
and J. Tu
, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015)
, 148-190.
doi: 10.1016/j.jde.2014.09.007.![]() ![]() ![]() |
|
P. Li
and S. T. Yau
, Estimate of the first eigenvalue of a compact Riemann manifold, Proceeding of Symposition in Pure Math., 36 (1980)
, 205-239.
![]() ![]() |
|
Y. Lv
and W. Wang
, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008)
, 1-23.
doi: 10.1016/j.jde.2007.10.009.![]() ![]() ![]() |
|
J. Milnor
, On the concept of attractor, Commun. Math. Phys., 99 (1985)
, 177-195.
doi: 10.1007/BF01212280.![]() ![]() ![]() |
|
A. Miranville
, V. Pata
and S. Zelik
, Exponential attractors for singularly perturbed damped wave equations: A simple construction, Asymptot. Anal., 53 (2007)
, 1-12.
![]() ![]() |
|
H. E. Nusse
and J. A. Yorke
, The equality of fractal dimension and uncertainty dimension for certain dynamical systems, Commun. Math. Phys., 150 (1992)
, 1-21.
doi: 10.1007/BF02096562.![]() ![]() ![]() |
|
A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
|
J. C. Robinson
, Stability of random attractors under perturbation and approximation, J. Differential Equations, 186 (2002)
, 652-669.
doi: 10.1016/S0022-0396(02)00038-4.![]() ![]() ![]() |
|
D. Ruelle
, Small random perturbations of dynamical systems and the definition of attractors, Commun. Math. Phys., 82 (1981/82)
, 137-151.
doi: 10.1007/BF01206949.![]() ![]() ![]() |
|
D. Ruelle
, Characteristic exponents for a viscous fluid subjected to time dependent forces, Commum. Math. Phys., 93 (1984)
, 285-300.
doi: 10.1007/BF01258529.![]() ![]() ![]() |
|
T. Sauer
, J. A. Yorke
and M. Casdagli
, Embedology, J. Stat. Phys., 65 (1993)
, 579-616.
doi: 10.1007/BF01053745.![]() ![]() ![]() |
|
A. Savostianov
and S. Zelik
, Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014)
, 657-665.
![]() ![]() |
|
A. Shirikyan
and S. Zelik
, Exponential attractors for random dynamical systems and applications, Stoch. PDE: Anal. Comp., 1 (2013)
, 241-281.
doi: 10.1007/s40072-013-0007-1.![]() ![]() ![]() |
|
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
|
B. Wang
, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014)
, 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |
|
B. Wang
, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012)
, 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
|
B. Wang
, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011)
, 3639-3663.
doi: 10.1090/S0002-9947-2011-05247-5.![]() ![]() ![]() |
|
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stochastics and Dynamics, 14 (2014), 1450009, 31 pp.
doi: 10.1142/s0219493714500099.![]() ![]() ![]() |
|
G. Wang and Y. Tang, Fractal dimension of a random invariant set and applications, J. Appl. Math., (2013), Art. ID 415764, 5 pp.
doi: 10.1155/2013/415764.![]() ![]() ![]() |
|
M. Yang
, J. Duan
and P. Kloeden
, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011)
, 464-478.
doi: 10.1016/j.nonrwa.2010.06.032.![]() ![]() ![]() |
|
S. Zelik
, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004)
, 921-934.
doi: 10.3934/cpaa.2004.3.921.![]() ![]() ![]() |
|
S. Zhou
, On dimension of the global attractor for damped nonlinear wave equations, J. Math. Phys., 40 (1999)
, 1432-1438.
doi: 10.1063/1.532813.![]() ![]() ![]() |
|
S. Zhou
, Dimension of the global attractor for damped nonlinear wave equations, Proc. Amer. Math. Soc., 127 (1999)
, 3623-3631.
doi: 10.1090/S0002-9939-99-05121-7.![]() ![]() ![]() |
|
S. Zhou
and X. Han
, Pullback exponential attractors for non-autonomous lattice systems, J. Dyna. Diff Eqns., 24 (2012)
, 601-631.
doi: 10.1007/s10884-012-9260-7.![]() ![]() ![]() |
|
S. Zhou
and L. Wang
, Kernel sections for damped non-autonomous wave equations with critical exponent, Discrete Contin. Dyn. Syst., 9 (2003)
, 399-412.
doi: 10.3934/dcds.2003.9.399.![]() ![]() ![]() |
|
S. Zhou
, F. Yin
and Z. Ouyang
, Random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst., 4 (2005)
, 883-903.
doi: 10.1137/050623097.![]() ![]() ![]() |
|
S. Zhou
and M. Zhao
, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015)
, 202-226.
doi: 10.1016/j.na.2015.03.009.![]() ![]() ![]() |
|
S. Zhou
and M. Zhao
, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear Anal., 133 (2016)
, 292-318.
doi: 10.1016/j.na.2015.12.013.![]() ![]() ![]() |
|
S. Zhou
and M. Zhao
, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 36 (2016)
, 2887-2914.
doi: 10.3934/dcds.2016.36.2887.![]() ![]() ![]() |