
-
Previous Article
On continuity equations in space-time domains
- DCDS Home
- This Issue
- Next Article
Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
1. | Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428, Buenos Aires, Argentina |
2. | Departamento de Matemática, Grupo de Investigación en Sistemas Dinámicos y Aplicaciones (GISDA), Universidad de Oviedo, C/ Federico García Lorca, n18, Oviedo, Spain |
$T$ |
$ {\left( {\frac{{u'}}{{\sqrt {1 - {{u'}^2}} }}} \right)^\prime } = h(t)g(u), $ |
$g$ |
$h$ |
References:
[1] |
J. C. Alexander, A primer on connectivity. In proceeding of the conference in fixed point theory, Fadell, E.- Fournier, G. Editors, Springer-Verlag Lecture Notes in Mathematics, 886 (1981), 455-488. Google Scholar |
[2] |
C. Bereanu, D. Gheorghe and M. Zamora, Periodic solutions for singular perturbations of the singular $\phi-$Laplacian operator,
Commun. Contemp. Math., 15(2013), 1250063 (22 pages).
doi: 10.1142/S0219199712500630. |
[3] |
C. Bereanu, D. Gheorghe and M. Zamora,
Non-resonant boundary value problems with singular $\phi$-Laplacian operators, Nonlinear Differential Equations and Applications, 20 (2013), 1365-1377.
doi: 10.1007/s00030-012-0212-z. |
[4] |
C. Bereanu, P. Jebelean and J. Mawhin,
Variational methods for nonlinear perturbations of singular $\phi$-Laplacians, Rend. Lincei Mat. Appl., 22 (2011), 89-111.
doi: 10.4171/RLM/589. |
[5] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[6] |
H. Brezis and J. Mawhin,
Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23 (2010), 801-810.
|
[7] |
A. V. Borisov and I. S. Mamaev,
The restricted two body problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 96 (2006), 1-17.
doi: 10.1007/s10569-006-9012-2. |
[8] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin,
Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.
doi: 10.1070/RD2004v009n03ABEH000280. |
[9] |
A. Boscaggin and F. Zanolin,
Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.
doi: 10.1007/s10231-013-0384-0. |
[10] |
J. L. Bravo and P. J. Torres,
Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927-938.
doi: 10.1515/ans-2010-0410. |
[11] |
A. Capietto, J. Mawhin and F. Zanolin,
Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.
doi: 10.1090/S0002-9947-1992-1042285-7. |
[12] |
P. Fitzpatrick, M. Martelli, J. Mawhin and R. Nussbaum,
Topological methods for ordinary differential equations, Lecture Notes in Mathematics, 1537 (1991), 1-209, Springer-Verlag, ISBN 3-540-56461-6.
doi: 10.1007/BFb0085073. |
[13] |
A. Fonda, R. Manásevich and F. Zanolin,
Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.
doi: 10.1137/0524074. |
[14] |
R. Hakl and M. Zamora,
On the open problems connected to the results of Lazer and Solimini, Proc. Roy. Soc. Edinb., Sect. A. Math., 144 (2014), 109-118.
doi: 10.1017/S0308210512001862. |
[15] |
R. Hakl and M. Zamora,
Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Canadian J. Math., 70 (2018), 173-190.
doi: 10.4153/CJM-2016-050-1. |
[16] |
E. H. Hutten, Relativistic (non-linear) oscillator,
Nature, 203 (1965), 892.
doi: 10.1038/205892a0. |
[17] |
A. C. Lazer and S. Solimini,
On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.
doi: 10.1090/S0002-9939-1987-0866438-7. |
[18] |
L. A. Mac-Coll, Theory of the relativistic oscillator, Am. J. Phys., 25 (1957), 535-538. Google Scholar |
[19] |
P. J. Torres,
Nondegeneracy of the periodically forced Liénard differential equations with $\phi$-Laplacian, Commun. Contemp. Math., 13 (2011), 283-293.
doi: 10.1142/S0219199711004208. |
[20] |
A. J. Ureña,
Periodic solutions of singular equations, Topological Methods in Nonlinear Analysis, 47 (2016), 55-72.
|
[21] |
G. T. Whyburn,
Topological Analysis, Princeton Univ. Press, 1958. |
[22] |
M. Zamora,
New periodic and quasi-periodic motions of a relativistic particle under a planar central force field with applications to scalar boundary periodic problems, J. Qualitative Theory of Differential Equations, 31 (2013), 1-16.
|
show all references
References:
[1] |
J. C. Alexander, A primer on connectivity. In proceeding of the conference in fixed point theory, Fadell, E.- Fournier, G. Editors, Springer-Verlag Lecture Notes in Mathematics, 886 (1981), 455-488. Google Scholar |
[2] |
C. Bereanu, D. Gheorghe and M. Zamora, Periodic solutions for singular perturbations of the singular $\phi-$Laplacian operator,
Commun. Contemp. Math., 15(2013), 1250063 (22 pages).
doi: 10.1142/S0219199712500630. |
[3] |
C. Bereanu, D. Gheorghe and M. Zamora,
Non-resonant boundary value problems with singular $\phi$-Laplacian operators, Nonlinear Differential Equations and Applications, 20 (2013), 1365-1377.
doi: 10.1007/s00030-012-0212-z. |
[4] |
C. Bereanu, P. Jebelean and J. Mawhin,
Variational methods for nonlinear perturbations of singular $\phi$-Laplacians, Rend. Lincei Mat. Appl., 22 (2011), 89-111.
doi: 10.4171/RLM/589. |
[5] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[6] |
H. Brezis and J. Mawhin,
Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23 (2010), 801-810.
|
[7] |
A. V. Borisov and I. S. Mamaev,
The restricted two body problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 96 (2006), 1-17.
doi: 10.1007/s10569-006-9012-2. |
[8] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin,
Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.
doi: 10.1070/RD2004v009n03ABEH000280. |
[9] |
A. Boscaggin and F. Zanolin,
Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.
doi: 10.1007/s10231-013-0384-0. |
[10] |
J. L. Bravo and P. J. Torres,
Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927-938.
doi: 10.1515/ans-2010-0410. |
[11] |
A. Capietto, J. Mawhin and F. Zanolin,
Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.
doi: 10.1090/S0002-9947-1992-1042285-7. |
[12] |
P. Fitzpatrick, M. Martelli, J. Mawhin and R. Nussbaum,
Topological methods for ordinary differential equations, Lecture Notes in Mathematics, 1537 (1991), 1-209, Springer-Verlag, ISBN 3-540-56461-6.
doi: 10.1007/BFb0085073. |
[13] |
A. Fonda, R. Manásevich and F. Zanolin,
Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.
doi: 10.1137/0524074. |
[14] |
R. Hakl and M. Zamora,
On the open problems connected to the results of Lazer and Solimini, Proc. Roy. Soc. Edinb., Sect. A. Math., 144 (2014), 109-118.
doi: 10.1017/S0308210512001862. |
[15] |
R. Hakl and M. Zamora,
Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Canadian J. Math., 70 (2018), 173-190.
doi: 10.4153/CJM-2016-050-1. |
[16] |
E. H. Hutten, Relativistic (non-linear) oscillator,
Nature, 203 (1965), 892.
doi: 10.1038/205892a0. |
[17] |
A. C. Lazer and S. Solimini,
On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.
doi: 10.1090/S0002-9939-1987-0866438-7. |
[18] |
L. A. Mac-Coll, Theory of the relativistic oscillator, Am. J. Phys., 25 (1957), 535-538. Google Scholar |
[19] |
P. J. Torres,
Nondegeneracy of the periodically forced Liénard differential equations with $\phi$-Laplacian, Commun. Contemp. Math., 13 (2011), 283-293.
doi: 10.1142/S0219199711004208. |
[20] |
A. J. Ureña,
Periodic solutions of singular equations, Topological Methods in Nonlinear Analysis, 47 (2016), 55-72.
|
[21] |
G. T. Whyburn,
Topological Analysis, Princeton Univ. Press, 1958. |
[22] |
M. Zamora,
New periodic and quasi-periodic motions of a relativistic particle under a planar central force field with applications to scalar boundary periodic problems, J. Qualitative Theory of Differential Equations, 31 (2013), 1-16.
|




[1] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[2] |
Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248 |
[3] |
Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010 |
[4] |
José Godoy, Nolbert Morales, Manuel Zamora. Existence and multiplicity of periodic solutions to an indefinite singular equation with two singularities. The degenerate case. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4137-4156. doi: 10.3934/dcds.2019167 |
[5] |
Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029 |
[6] |
Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557 |
[7] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[8] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[9] |
Yingjie Bi, Siyu Liu, Yong Li. Periodic solutions of differential-algebraic equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019232 |
[10] |
Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301 |
[11] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[12] |
Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 |
[13] |
Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453 |
[14] |
Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113 |
[15] |
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 |
[16] |
Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861 |
[17] |
Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252 |
[18] |
Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 |
[19] |
Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031 |
[20] |
Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]