October  2018, 38(10): 4819-4835. doi: 10.3934/dcds.2018211

Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity

1. 

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428, Buenos Aires, Argentina

2. 

Departamento de Matemática, Grupo de Investigación en Sistemas Dinámicos y Aplicaciones (GISDA), Universidad de Oviedo, C/ Federico García Lorca, n18, Oviedo, Spain

* Corresponding author: Manuel Zamora

Received  February 2017 Revised  December 2017 Published  July 2018

Fund Project: The first author is supported by projects UBACyT 20020120100029BA and CONICET PIP11220130100006CO, and the second author was supported by FONDECYT, project no. 11140203.

TWe prove the existence of
$T$
-periodic solutions for the second order non-linear equation
$ {\left( {\frac{{u'}}{{\sqrt {1 - {{u'}^2}} }}} \right)^\prime } = h(t)g(u), $
where the non-linear term
$g$
has two singularities and the weight function
$h$
changes sign. We find a relation between the degeneracy of the zeroes of the weight function and the order of one of the singularities of the non-linear term. The proof is based on the classical Leray-Schauder continuation theorem. Some applications to important mathematical models are presented.
Citation: Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211
References:
[1]

J. C. Alexander, A primer on connectivity. In proceeding of the conference in fixed point theory, Fadell, E.- Fournier, G. Editors, Springer-Verlag Lecture Notes in Mathematics, 886 (1981), 455-488. Google Scholar

[2]

C. Bereanu, D. Gheorghe and M. Zamora, Periodic solutions for singular perturbations of the singular $\phi-$Laplacian operator, Commun. Contemp. Math., 15(2013), 1250063 (22 pages). doi: 10.1142/S0219199712500630.  Google Scholar

[3]

C. BereanuD. Gheorghe and M. Zamora, Non-resonant boundary value problems with singular $\phi$-Laplacian operators, Nonlinear Differential Equations and Applications, 20 (2013), 1365-1377.  doi: 10.1007/s00030-012-0212-z.  Google Scholar

[4]

C. BereanuP. Jebelean and J. Mawhin, Variational methods for nonlinear perturbations of singular $\phi$-Laplacians, Rend. Lincei Mat. Appl., 22 (2011), 89-111.  doi: 10.4171/RLM/589.  Google Scholar

[5]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[6]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23 (2010), 801-810.   Google Scholar

[7]

A. V. Borisov and I. S. Mamaev, The restricted two body problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 96 (2006), 1-17.  doi: 10.1007/s10569-006-9012-2.  Google Scholar

[8]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.  doi: 10.1070/RD2004v009n03ABEH000280.  Google Scholar

[9]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.  doi: 10.1007/s10231-013-0384-0.  Google Scholar

[10]

J. L. Bravo and P. J. Torres, Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927-938.  doi: 10.1515/ans-2010-0410.  Google Scholar

[11]

A. CapiettoJ. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.  doi: 10.1090/S0002-9947-1992-1042285-7.  Google Scholar

[12]

P. FitzpatrickM. MartelliJ. Mawhin and R. Nussbaum, Topological methods for ordinary differential equations, Lecture Notes in Mathematics, 1537 (1991), 1-209, Springer-Verlag, ISBN 3-540-56461-6.  doi: 10.1007/BFb0085073.  Google Scholar

[13]

A. FondaR. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.  doi: 10.1137/0524074.  Google Scholar

[14]

R. Hakl and M. Zamora, On the open problems connected to the results of Lazer and Solimini, Proc. Roy. Soc. Edinb., Sect. A. Math., 144 (2014), 109-118.  doi: 10.1017/S0308210512001862.  Google Scholar

[15]

R. Hakl and M. Zamora, Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Canadian J. Math., 70 (2018), 173-190.  doi: 10.4153/CJM-2016-050-1.  Google Scholar

[16]

E. H. Hutten, Relativistic (non-linear) oscillator, Nature, 203 (1965), 892. doi: 10.1038/205892a0.  Google Scholar

[17]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.  doi: 10.1090/S0002-9939-1987-0866438-7.  Google Scholar

[18]

L. A. Mac-Coll, Theory of the relativistic oscillator, Am. J. Phys., 25 (1957), 535-538.   Google Scholar

[19]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equations with $\phi$-Laplacian, Commun. Contemp. Math., 13 (2011), 283-293.  doi: 10.1142/S0219199711004208.  Google Scholar

[20]

A. J. Ureña, Periodic solutions of singular equations, Topological Methods in Nonlinear Analysis, 47 (2016), 55-72.   Google Scholar

[21]

G. T. Whyburn, Topological Analysis, Princeton Univ. Press, 1958.  Google Scholar

[22]

M. Zamora, New periodic and quasi-periodic motions of a relativistic particle under a planar central force field with applications to scalar boundary periodic problems, J. Qualitative Theory of Differential Equations, 31 (2013), 1-16.   Google Scholar

show all references

References:
[1]

J. C. Alexander, A primer on connectivity. In proceeding of the conference in fixed point theory, Fadell, E.- Fournier, G. Editors, Springer-Verlag Lecture Notes in Mathematics, 886 (1981), 455-488. Google Scholar

[2]

C. Bereanu, D. Gheorghe and M. Zamora, Periodic solutions for singular perturbations of the singular $\phi-$Laplacian operator, Commun. Contemp. Math., 15(2013), 1250063 (22 pages). doi: 10.1142/S0219199712500630.  Google Scholar

[3]

C. BereanuD. Gheorghe and M. Zamora, Non-resonant boundary value problems with singular $\phi$-Laplacian operators, Nonlinear Differential Equations and Applications, 20 (2013), 1365-1377.  doi: 10.1007/s00030-012-0212-z.  Google Scholar

[4]

C. BereanuP. Jebelean and J. Mawhin, Variational methods for nonlinear perturbations of singular $\phi$-Laplacians, Rend. Lincei Mat. Appl., 22 (2011), 89-111.  doi: 10.4171/RLM/589.  Google Scholar

[5]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[6]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23 (2010), 801-810.   Google Scholar

[7]

A. V. Borisov and I. S. Mamaev, The restricted two body problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 96 (2006), 1-17.  doi: 10.1007/s10569-006-9012-2.  Google Scholar

[8]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.  doi: 10.1070/RD2004v009n03ABEH000280.  Google Scholar

[9]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.  doi: 10.1007/s10231-013-0384-0.  Google Scholar

[10]

J. L. Bravo and P. J. Torres, Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927-938.  doi: 10.1515/ans-2010-0410.  Google Scholar

[11]

A. CapiettoJ. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.  doi: 10.1090/S0002-9947-1992-1042285-7.  Google Scholar

[12]

P. FitzpatrickM. MartelliJ. Mawhin and R. Nussbaum, Topological methods for ordinary differential equations, Lecture Notes in Mathematics, 1537 (1991), 1-209, Springer-Verlag, ISBN 3-540-56461-6.  doi: 10.1007/BFb0085073.  Google Scholar

[13]

A. FondaR. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.  doi: 10.1137/0524074.  Google Scholar

[14]

R. Hakl and M. Zamora, On the open problems connected to the results of Lazer and Solimini, Proc. Roy. Soc. Edinb., Sect. A. Math., 144 (2014), 109-118.  doi: 10.1017/S0308210512001862.  Google Scholar

[15]

R. Hakl and M. Zamora, Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Canadian J. Math., 70 (2018), 173-190.  doi: 10.4153/CJM-2016-050-1.  Google Scholar

[16]

E. H. Hutten, Relativistic (non-linear) oscillator, Nature, 203 (1965), 892. doi: 10.1038/205892a0.  Google Scholar

[17]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.  doi: 10.1090/S0002-9939-1987-0866438-7.  Google Scholar

[18]

L. A. Mac-Coll, Theory of the relativistic oscillator, Am. J. Phys., 25 (1957), 535-538.   Google Scholar

[19]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equations with $\phi$-Laplacian, Commun. Contemp. Math., 13 (2011), 283-293.  doi: 10.1142/S0219199711004208.  Google Scholar

[20]

A. J. Ureña, Periodic solutions of singular equations, Topological Methods in Nonlinear Analysis, 47 (2016), 55-72.   Google Scholar

[21]

G. T. Whyburn, Topological Analysis, Princeton Univ. Press, 1958.  Google Scholar

[22]

M. Zamora, New periodic and quasi-periodic motions of a relativistic particle under a planar central force field with applications to scalar boundary periodic problems, J. Qualitative Theory of Differential Equations, 31 (2013), 1-16.   Google Scholar

Figure 1.  The figure illustrates a possible behaviour of any $T-$periodic solution $u$ of (20) when $t_*$ is included on $[\bar{\ell}_i, \bar{\ell}_i')$ (Case Ⅰ.) or if $t_*\in (\bar{\ell_i}, \bar{\ell}_i']$ (Case Ⅱ.).
Figure 2.  The figure illustrates a possible behaviour of the $T-$periodic solution $u$ of (16) when $t_*$ is included on $[a_i, a_i']$, distinguishing if $t_*\in [a_i, \bar{\ell}_i)$ (Case Ⅰ. a)) or $t_*\in (\bar{\ell}_i', a_i']$ (Case Ⅰ. b)).
Figure 3.  The figure illustrates a possible behaviour of the $T-$periodic solution $u$ of (16) on the interval $[\bar{\ell}_i', \ell_i']$, assuming that $u(a_i')<\alpha+2\delta$.
Figure 4.  The figure illustrates a possible behaviour of the $T-$periodic solution $u$ of (16) on the interval $[\bar{\ell}_i', \ell_i']$, assuming that $u(a_i')\geq \alpha+2\delta$.
[1]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[2]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[3]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[4]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[5]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[6]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[7]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[8]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[11]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[14]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[15]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[18]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (173)
  • HTML views (123)
  • Cited by (0)

Other articles
by authors

[Back to Top]