
-
Previous Article
On continuity equations in space-time domains
- DCDS Home
- This Issue
- Next Article
Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
1. | Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428, Buenos Aires, Argentina |
2. | Departamento de Matemática, Grupo de Investigación en Sistemas Dinámicos y Aplicaciones (GISDA), Universidad de Oviedo, C/ Federico García Lorca, n18, Oviedo, Spain |
$T$ |
$ {\left( {\frac{{u'}}{{\sqrt {1 - {{u'}^2}} }}} \right)^\prime } = h(t)g(u), $ |
$g$ |
$h$ |
References:
[1] |
J. C. Alexander, A primer on connectivity. In proceeding of the conference in fixed point theory, Fadell, E.- Fournier, G. Editors, Springer-Verlag Lecture Notes in Mathematics, 886 (1981), 455-488. Google Scholar |
[2] |
C. Bereanu, D. Gheorghe and M. Zamora, Periodic solutions for singular perturbations of the singular $\phi-$Laplacian operator,
Commun. Contemp. Math., 15(2013), 1250063 (22 pages).
doi: 10.1142/S0219199712500630. |
[3] |
C. Bereanu, D. Gheorghe and M. Zamora,
Non-resonant boundary value problems with singular $\phi$-Laplacian operators, Nonlinear Differential Equations and Applications, 20 (2013), 1365-1377.
doi: 10.1007/s00030-012-0212-z. |
[4] |
C. Bereanu, P. Jebelean and J. Mawhin,
Variational methods for nonlinear perturbations of singular $\phi$-Laplacians, Rend. Lincei Mat. Appl., 22 (2011), 89-111.
doi: 10.4171/RLM/589. |
[5] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[6] |
H. Brezis and J. Mawhin,
Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23 (2010), 801-810.
|
[7] |
A. V. Borisov and I. S. Mamaev,
The restricted two body problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 96 (2006), 1-17.
doi: 10.1007/s10569-006-9012-2. |
[8] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin,
Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.
doi: 10.1070/RD2004v009n03ABEH000280. |
[9] |
A. Boscaggin and F. Zanolin,
Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.
doi: 10.1007/s10231-013-0384-0. |
[10] |
J. L. Bravo and P. J. Torres,
Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927-938.
doi: 10.1515/ans-2010-0410. |
[11] |
A. Capietto, J. Mawhin and F. Zanolin,
Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.
doi: 10.1090/S0002-9947-1992-1042285-7. |
[12] |
P. Fitzpatrick, M. Martelli, J. Mawhin and R. Nussbaum,
Topological methods for ordinary differential equations, Lecture Notes in Mathematics, 1537 (1991), 1-209, Springer-Verlag, ISBN 3-540-56461-6.
doi: 10.1007/BFb0085073. |
[13] |
A. Fonda, R. Manásevich and F. Zanolin,
Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.
doi: 10.1137/0524074. |
[14] |
R. Hakl and M. Zamora,
On the open problems connected to the results of Lazer and Solimini, Proc. Roy. Soc. Edinb., Sect. A. Math., 144 (2014), 109-118.
doi: 10.1017/S0308210512001862. |
[15] |
R. Hakl and M. Zamora,
Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Canadian J. Math., 70 (2018), 173-190.
doi: 10.4153/CJM-2016-050-1. |
[16] |
E. H. Hutten, Relativistic (non-linear) oscillator,
Nature, 203 (1965), 892.
doi: 10.1038/205892a0. |
[17] |
A. C. Lazer and S. Solimini,
On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.
doi: 10.1090/S0002-9939-1987-0866438-7. |
[18] |
L. A. Mac-Coll, Theory of the relativistic oscillator, Am. J. Phys., 25 (1957), 535-538. Google Scholar |
[19] |
P. J. Torres,
Nondegeneracy of the periodically forced Liénard differential equations with $\phi$-Laplacian, Commun. Contemp. Math., 13 (2011), 283-293.
doi: 10.1142/S0219199711004208. |
[20] |
A. J. Ureña,
Periodic solutions of singular equations, Topological Methods in Nonlinear Analysis, 47 (2016), 55-72.
|
[21] |
G. T. Whyburn,
Topological Analysis, Princeton Univ. Press, 1958. |
[22] |
M. Zamora,
New periodic and quasi-periodic motions of a relativistic particle under a planar central force field with applications to scalar boundary periodic problems, J. Qualitative Theory of Differential Equations, 31 (2013), 1-16.
|
show all references
References:
[1] |
J. C. Alexander, A primer on connectivity. In proceeding of the conference in fixed point theory, Fadell, E.- Fournier, G. Editors, Springer-Verlag Lecture Notes in Mathematics, 886 (1981), 455-488. Google Scholar |
[2] |
C. Bereanu, D. Gheorghe and M. Zamora, Periodic solutions for singular perturbations of the singular $\phi-$Laplacian operator,
Commun. Contemp. Math., 15(2013), 1250063 (22 pages).
doi: 10.1142/S0219199712500630. |
[3] |
C. Bereanu, D. Gheorghe and M. Zamora,
Non-resonant boundary value problems with singular $\phi$-Laplacian operators, Nonlinear Differential Equations and Applications, 20 (2013), 1365-1377.
doi: 10.1007/s00030-012-0212-z. |
[4] |
C. Bereanu, P. Jebelean and J. Mawhin,
Variational methods for nonlinear perturbations of singular $\phi$-Laplacians, Rend. Lincei Mat. Appl., 22 (2011), 89-111.
doi: 10.4171/RLM/589. |
[5] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[6] |
H. Brezis and J. Mawhin,
Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23 (2010), 801-810.
|
[7] |
A. V. Borisov and I. S. Mamaev,
The restricted two body problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 96 (2006), 1-17.
doi: 10.1007/s10569-006-9012-2. |
[8] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin,
Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.
doi: 10.1070/RD2004v009n03ABEH000280. |
[9] |
A. Boscaggin and F. Zanolin,
Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.
doi: 10.1007/s10231-013-0384-0. |
[10] |
J. L. Bravo and P. J. Torres,
Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927-938.
doi: 10.1515/ans-2010-0410. |
[11] |
A. Capietto, J. Mawhin and F. Zanolin,
Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.
doi: 10.1090/S0002-9947-1992-1042285-7. |
[12] |
P. Fitzpatrick, M. Martelli, J. Mawhin and R. Nussbaum,
Topological methods for ordinary differential equations, Lecture Notes in Mathematics, 1537 (1991), 1-209, Springer-Verlag, ISBN 3-540-56461-6.
doi: 10.1007/BFb0085073. |
[13] |
A. Fonda, R. Manásevich and F. Zanolin,
Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.
doi: 10.1137/0524074. |
[14] |
R. Hakl and M. Zamora,
On the open problems connected to the results of Lazer and Solimini, Proc. Roy. Soc. Edinb., Sect. A. Math., 144 (2014), 109-118.
doi: 10.1017/S0308210512001862. |
[15] |
R. Hakl and M. Zamora,
Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Canadian J. Math., 70 (2018), 173-190.
doi: 10.4153/CJM-2016-050-1. |
[16] |
E. H. Hutten, Relativistic (non-linear) oscillator,
Nature, 203 (1965), 892.
doi: 10.1038/205892a0. |
[17] |
A. C. Lazer and S. Solimini,
On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.
doi: 10.1090/S0002-9939-1987-0866438-7. |
[18] |
L. A. Mac-Coll, Theory of the relativistic oscillator, Am. J. Phys., 25 (1957), 535-538. Google Scholar |
[19] |
P. J. Torres,
Nondegeneracy of the periodically forced Liénard differential equations with $\phi$-Laplacian, Commun. Contemp. Math., 13 (2011), 283-293.
doi: 10.1142/S0219199711004208. |
[20] |
A. J. Ureña,
Periodic solutions of singular equations, Topological Methods in Nonlinear Analysis, 47 (2016), 55-72.
|
[21] |
G. T. Whyburn,
Topological Analysis, Princeton Univ. Press, 1958. |
[22] |
M. Zamora,
New periodic and quasi-periodic motions of a relativistic particle under a planar central force field with applications to scalar boundary periodic problems, J. Qualitative Theory of Differential Equations, 31 (2013), 1-16.
|




[1] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[2] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[3] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[4] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[5] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[6] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[7] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[8] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[9] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[10] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[11] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[12] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[13] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[14] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[15] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[16] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[17] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[18] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[19] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[20] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]