In this paper we consider a class of continuity equations that are conditioned to stay in general space-time domains, which is formulated as a continuum limit of interacting particle systems. Firstly, we study the well-posedness of the solutions and provide examples illustrating that the stability of solutions is strongly related to the decay of initial data at infinity. In the second part, we consider the vanishing viscosity approximation of the system, given with the co-normal boundary data. If the domain is spatially convex, the limit coincides with the solution of our original system, giving another interpretation to the equation.
Citation: |
[1] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer Science & Business Media, 2008.
![]() ![]() |
[2] |
J.A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, et al., Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Mathematical Journal, 156 (2011), 229-271.
doi: 10.1215/00127094-2010-211.![]() ![]() ![]() |
[3] |
J.A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials, Nonlinear Analysis: Theory, Methods & Applications, 100 (2014), 122-147.
doi: 10.1016/j.na.2014.01.010.![]() ![]() ![]() |
[4] |
J.A. Carrillo, D. Slepcev and L. Wu, Nonlocal-interaction equations on uniformly prox-regular sets, Discrete and Continuous Dynamical Systems-Series A, 36 (2016), 1209-1247.
![]() ![]() |
[5] |
F.H. Clarke, R. Stern and P. Wolenski, Proximal smoothness and the lower-c2 property, J. Convex Anal, 2 (1995), 117-144.
![]() ![]() |
[6] |
E. Cozzi, G.-M. Gie and J.P. Kelliher, The aggregation equation with newtonian potential: The vanishing viscosity limit, Journal of Mathematical Analysis and Applications, 453 (2017), 841-893.
doi: 10.1016/j.jmaa.2017.04.009.![]() ![]() ![]() |
[7] |
K. Craig, The exponential formula for the wasserstein metric, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 169-187.
doi: 10.1051/cocv/2014069.![]() ![]() ![]() |
[8] |
M. DelPino and J. Dolbeault, The optimal euclidean l p-sobolev logarithmic inequality, Journal of Functional Analysis, 197 (2003), 151-161.
doi: 10.1016/S0022-1236(02)00070-8.![]() ![]() ![]() |
[9] |
S. DiMarino, B. Maury and F. Santambrogio, Measure sweeping processes, Journal of Convex Analysis, 23 (2016), 567-601.
![]() ![]() |
[10] |
S. DiMarino and A.R. Mészáros, Uniqueness issues for evolution equations with density constraints, Mathematical Models and Methods in Applied Sciences, 26 (2016), 1761-1783.
doi: 10.1142/S0218202516500445.![]() ![]() ![]() |
[11] |
J.F. Edmond and L. Thibault, Bv solutions of nonconvex sweeping process differential inclusion with perturbation, Journal of Differential Equations, 226 (2006), 135-179.
doi: 10.1016/j.jde.2005.12.005.![]() ![]() ![]() |
[12] |
I. Fonseca and G. Leoni,
Modern Methods in the Calculus of Variations: L^ p Spaces, Springer Science & Business Media, 2007.
![]() ![]() |
[13] |
L. Gross, Logarithmic sobolev inequalities, American Journal of Mathematics, 97 (1975), 1061-1083.
doi: 10.2307/2373688.![]() ![]() ![]() |
[14] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the fokker--planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.
doi: 10.1137/S0036141096303359.![]() ![]() ![]() |
[15] |
R.J. McCann, et al., Existence and uniqueness of monotone measure-preserving maps, Duke Mathematical Journal, 80 (1995), 309-324.
doi: 10.1215/S0012-7094-95-08013-2.![]() ![]() ![]() |
[16] |
L. Petrelli and A. Tudorascu, Variational principle for general diffusion problems, Applied Mathematics and Optimization, 50 (2004), 229-257.
doi: 10.1007/s00245-004-0801-2.![]() ![]() ![]() |
[17] |
L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Communications in Partial Differential Equations, 40 (2015), 1241-1281.
doi: 10.1080/03605302.2015.1015033.![]() ![]() ![]() |