We study the emergent collective behaviors for an ensemble of identical Kuramoto oscillators under the effect of inertia. In the absence of inertial effects, it is well known that the generic initial Kuramoto ensemble relaxes to the phase-locked states asymptotically (emergence of complete synchronization) in a large coupling regime. Similarly, even for the presence of inertial effects, similar collective behaviors are observed numerically for generic initial configurations in a large coupling strength regime. However, this phenomenon has not been verified analytically in full generality yet, although there are several partial results in some restricted set of initial configurations. In this paper, we present several improved complete synchronization estimates for the Kuramoto ensemble with inertia in two frameworks for a finite system. Our improved frameworks describe the emergence of phase-locked states and its structure. Additionally, we show that as the number of oscillators tends to infinity, the Kuramoto ensemble with infinite size can be approximated by the corresponding kinetic mean-field model uniformly in time. Moreover, we also establish the global existence of measure-valued solutions for the Kuramoto equation and its large-time asymptotics.
Citation: |
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137.![]() ![]() |
[2] |
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153.
doi: 10.1016/j.physrep.2008.09.002.![]() ![]() ![]() |
[3] |
N. J. Balmforth and R. Sassi, A shocking display of synchrony, Physica D, 143 (2000), 21-55.
doi: 10.1016/S0167-2789(00)00095-6.![]() ![]() ![]() |
[4] |
I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 262-270.
![]() |
[5] |
D. Benedetto, E. Caglioti and U. Montemagno, On the complete phase synchronization of the Kuramoto model in the mean-field limit, Comm. Math. Sci., 13 (2015), 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6.![]() ![]() ![]() |
[6] |
F. Bolley, A. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, ESAIM: M2AN, 44 (2010), 867-884.
doi: 10.1051/m2an/2010045.![]() ![]() ![]() |
[7] |
W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Commun. Math. Phys., 56 (1977), 101-113.
doi: 10.1007/BF01611497.![]() ![]() ![]() |
[8] |
J. Buck and E. Buck, Biology of sychronous flashing of fireflies,
Nature, 211 (1966), 562.
![]() |
[9] |
J. A. Carrillo, Y.-P. Choi, S.-Y. Ha, M.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.
doi: 10.1007/s10955-014-1005-z.![]() ![]() ![]() |
[10] |
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287.![]() ![]() ![]() |
[11] |
Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011.![]() ![]() ![]() |
[12] |
Y.-P. Choi, S.-Y. Ha and S. Noh, Remarks on the nonlinear stability of the Kuramoto model with inertia, Quart. Appl. Math., 73 (2015), 391-399.
doi: 10.1090/qam/1383.![]() ![]() ![]() |
[13] |
Y.-P. Choi, S.-Y. Ha, S. Jung and M. Slemrod, Kuramoto oscillators with inertia: A fast-slow dynamical systems approach, Quart. Appl. Math., 73 (2015), 467-482.
doi: 10.1090/qam/1380.![]() ![]() ![]() |
[14] |
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44.
doi: 10.1016/j.physd.2010.08.004.![]() ![]() ![]() |
[15] |
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto-Daido model with inertia, Netw. Heter. Media, 8 (2013), 943-968.
doi: 10.3934/nhm.2013.8.943.![]() ![]() ![]() |
[16] |
Y.-P. Choi, S.-Y. Ha, Z. Li, X. Xue and S.-B. Yun, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Differ. Equat., 257 (2014), 2591-2621.
doi: 10.1016/j.jde.2014.05.054.![]() ![]() ![]() |
[17] |
Y.-P. Choi and Z. Li, On the region of attraction of phase-locked states for swing equations on connected graphs with inhomogeneous damping, submitted.
![]() |
[18] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884.![]() ![]() ![]() |
[19] |
R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 48-58.
![]() ![]() |
[20] |
J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7.![]() ![]() ![]() |
[21] |
F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.
doi: 10.1016/j.automatica.2014.04.012.![]() ![]() ![]() |
[22] |
F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X.![]() ![]() ![]() |
[23] |
G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585.
doi: 10.1007/BF00164052.![]() ![]() ![]() |
[24] |
S.-Y. Ha and Z. Li, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Meth. Mod. Appl. Sci., 26 (2016), 357-382.
doi: 10.1142/S0218202516400054.![]() ![]() ![]() |
[25] |
S.-Y. Ha, Y.-H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, submitted.
![]() |
[26] |
S.-Y. Ha, D. Ko, J. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267.
doi: 10.4171/EMSS/17.![]() ![]() ![]() |
[27] |
S.-Y. Ha, H. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Comm. Math. Sci., 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10.![]() ![]() ![]() |
[28] |
S.-Y. Ha, J. Kim and X. Zhang, Uniform $\ell_p$-stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.
doi: 10.3934/krm.2018045.![]() ![]() ![]() |
[29] |
A. Haraux and M. A. Jendoubi, Convergence of solutions of second order gradient-like systems with analytic nonlinearities, J. Differ. Equat., 114 (1998), 313-320.
doi: 10.1006/jdeq.1997.3393.![]() ![]() ![]() |
[30] |
Y. Kuramoto,
International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420.
![]() |
[31] |
Z. Li, X. Xue and D. Yu, Synchronization and transient stability in power grids based on Lojasiewicz inequalities, SIAM J. Control Optim., 52 (2014), 2482-2511.
doi: 10.1137/130950604.![]() ![]() ![]() |
[32] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x.![]() ![]() ![]() |
[33] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266.
doi: 10.1016/j.physd.2005.01.017.![]() ![]() ![]() |
[34] |
R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635.
doi: 10.1007/BF01029202.![]() ![]() ![]() |
[35] |
H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Mathematics, 1048, Springer, Berlin, Heidelberg, 1984, 60-110.
doi: 10.1007/BFb0071878.![]() ![]() ![]() |
[36] |
A. Pikovsky, M. Rosenblum and J. Kurths,
Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() ![]() |
[37] |
H. Spohn, On the Vlasov hierarchy, Math. Methods Appl. Sci., 3 (1981), 445-455.
doi: 10.1002/mma.1670030131.![]() ![]() ![]() |
[38] |
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4.![]() ![]() ![]() |
[39] |
H. A. Tanaka, A. J. Lichtenberg and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems Phys. Rev. Lett. 78 (1997), 2104.
doi: 10.1103/PhysRevLett.78.2104.![]() ![]() |
[40] |
H. A. Tanaka, A. J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses, Physica D, 100 (1997), 279-300.
doi: 10.1016/S0167-2789(96)00193-5.![]() ![]() |
[41] |
J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.
![]() |
[42] |
M. Verwoerd and O. Mason, Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst., 7 (2008), 134-160.
doi: 10.1137/070686858.![]() ![]() ![]() |
[43] |
M. Verwoerd and O. Mason, On computing the critical coupling coefficient for the Kuramoto Model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst., 8 (2009), 417-453.
doi: 10.1137/080725726.![]() ![]() ![]() |
[44] |
C. Villani, Optimal Transport, Old and New, Springer 2008.
doi: 10.1007/978-3-540-71050-9.![]() ![]() ![]() |
[45] |
A. T. Winfree,
The Geometry of Biological Time, Springer New York, 1980.
![]() ![]() |
[46] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.
doi: 10.1016/0022-5193(67)90051-3.![]() ![]() |