October  2018, 38(10): 4875-4913. doi: 10.3934/dcds.2018213

Emergent dynamics of the Kuramoto ensemble under the effect of inertia

1. 

Department of Mathematics and Institute of Applied Mathematics, Inha University, Incheon 22212, Korea

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

3. 

Korea Institute for Advanced Study, Hoegiro 87, Seoul 02455, Korea

4. 

Department of Mathematics, University of Maryland, College Park MD 20742-3289, USA

* Corresponding author

Received  August 2017 Revised  January 2018 Published  July 2018

We study the emergent collective behaviors for an ensemble of identical Kuramoto oscillators under the effect of inertia. In the absence of inertial effects, it is well known that the generic initial Kuramoto ensemble relaxes to the phase-locked states asymptotically (emergence of complete synchronization) in a large coupling regime. Similarly, even for the presence of inertial effects, similar collective behaviors are observed numerically for generic initial configurations in a large coupling strength regime. However, this phenomenon has not been verified analytically in full generality yet, although there are several partial results in some restricted set of initial configurations. In this paper, we present several improved complete synchronization estimates for the Kuramoto ensemble with inertia in two frameworks for a finite system. Our improved frameworks describe the emergence of phase-locked states and its structure. Additionally, we show that as the number of oscillators tends to infinity, the Kuramoto ensemble with infinite size can be approximated by the corresponding kinetic mean-field model uniformly in time. Moreover, we also establish the global existence of measure-valued solutions for the Kuramoto equation and its large-time asymptotics.

Citation: Young-Pil Choi, Seung-Yeal Ha, Javier Morales. Emergent dynamics of the Kuramoto ensemble under the effect of inertia. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4875-4913. doi: 10.3934/dcds.2018213
References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.

[2]

A. ArenasA. Díaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153.  doi: 10.1016/j.physrep.2008.09.002.

[3]

N. J. Balmforth and R. Sassi, A shocking display of synchrony, Physica D, 143 (2000), 21-55.  doi: 10.1016/S0167-2789(00)00095-6.

[4]

I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 262-270. 

[5]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization of the Kuramoto model in the mean-field limit, Comm. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.

[6]

F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, ESAIM: M2AN, 44 (2010), 867-884.  doi: 10.1051/m2an/2010045.

[7]

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Commun. Math. Phys., 56 (1977), 101-113.  doi: 10.1007/BF01611497.

[8]

J. Buck and E. Buck, Biology of sychronous flashing of fireflies, Nature, 211 (1966), 562.

[9]

J. A. CarrilloY.-P. ChoiS.-Y. HaM.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.

[10]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.

[11]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.

[12]

Y.-P. ChoiS.-Y. Ha and S. Noh, Remarks on the nonlinear stability of the Kuramoto model with inertia, Quart. Appl. Math., 73 (2015), 391-399.  doi: 10.1090/qam/1383.

[13]

Y.-P. ChoiS.-Y. HaS. Jung and M. Slemrod, Kuramoto oscillators with inertia: A fast-slow dynamical systems approach, Quart. Appl. Math., 73 (2015), 467-482.  doi: 10.1090/qam/1380.

[14]

Y.-P. ChoiS.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44.  doi: 10.1016/j.physd.2010.08.004.

[15]

Y.-P. ChoiS.-Y. Ha and S.-B. Yun, Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto-Daido model with inertia, Netw. Heter. Media, 8 (2013), 943-968.  doi: 10.3934/nhm.2013.8.943.

[16]

Y.-P. ChoiS.-Y. HaZ. LiX. Xue and S.-B. Yun, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Differ. Equat., 257 (2014), 2591-2621.  doi: 10.1016/j.jde.2014.05.054.

[17]

Y.-P. Choi and Z. Li, On the region of attraction of phase-locked states for swing equations on connected graphs with inhomogeneous damping, submitted.

[18]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.

[19]

R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 48-58. 

[20]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.

[21]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.

[22]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.

[23]

G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585.  doi: 10.1007/BF00164052.

[24]

S.-Y. Ha and Z. Li, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Meth. Mod. Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.

[25]

S.-Y. Ha, Y.-H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, submitted.

[26]

S.-Y. HaD. KoJ. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267.  doi: 10.4171/EMSS/17.

[27]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Comm. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.

[28]

S.-Y. HaJ. Kim and X. Zhang, Uniform $\ell_p$-stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.

[29]

A. Haraux and M. A. Jendoubi, Convergence of solutions of second order gradient-like systems with analytic nonlinearities, J. Differ. Equat., 114 (1998), 313-320.  doi: 10.1006/jdeq.1997.3393.

[30]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420.

[31]

Z. LiX. Xue and D. Yu, Synchronization and transient stability in power grids based on Lojasiewicz inequalities, SIAM J. Control Optim., 52 (2014), 2482-2511.  doi: 10.1137/130950604.

[32]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347.  doi: 10.1007/s00332-006-0806-x.

[33]

R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266.  doi: 10.1016/j.physd.2005.01.017.

[34]

R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635.  doi: 10.1007/BF01029202.

[35]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Mathematics, 1048, Springer, Berlin, Heidelberg, 1984, 60-110. doi: 10.1007/BFb0071878.

[36]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.

[37]

H. Spohn, On the Vlasov hierarchy, Math. Methods Appl. Sci., 3 (1981), 445-455.  doi: 10.1002/mma.1670030131.

[38]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.

[39]

H. A. Tanaka, A. J. Lichtenberg and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems Phys. Rev. Lett. 78 (1997), 2104. doi: 10.1103/PhysRevLett.78.2104.

[40]

H. A. TanakaA. J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses, Physica D, 100 (1997), 279-300.  doi: 10.1016/S0167-2789(96)00193-5.

[41]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. 

[42]

M. Verwoerd and O. Mason, Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst., 7 (2008), 134-160.  doi: 10.1137/070686858.

[43]

M. Verwoerd and O. Mason, On computing the critical coupling coefficient for the Kuramoto Model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst., 8 (2009), 417-453.  doi: 10.1137/080725726.

[44]

C. Villani, Optimal Transport, Old and New, Springer 2008. doi: 10.1007/978-3-540-71050-9.

[45]

A. T. Winfree, The Geometry of Biological Time, Springer New York, 1980.

[46]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.  doi: 10.1016/0022-5193(67)90051-3.

show all references

References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.

[2]

A. ArenasA. Díaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153.  doi: 10.1016/j.physrep.2008.09.002.

[3]

N. J. Balmforth and R. Sassi, A shocking display of synchrony, Physica D, 143 (2000), 21-55.  doi: 10.1016/S0167-2789(00)00095-6.

[4]

I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 262-270. 

[5]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization of the Kuramoto model in the mean-field limit, Comm. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.

[6]

F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, ESAIM: M2AN, 44 (2010), 867-884.  doi: 10.1051/m2an/2010045.

[7]

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Commun. Math. Phys., 56 (1977), 101-113.  doi: 10.1007/BF01611497.

[8]

J. Buck and E. Buck, Biology of sychronous flashing of fireflies, Nature, 211 (1966), 562.

[9]

J. A. CarrilloY.-P. ChoiS.-Y. HaM.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.

[10]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.

[11]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.

[12]

Y.-P. ChoiS.-Y. Ha and S. Noh, Remarks on the nonlinear stability of the Kuramoto model with inertia, Quart. Appl. Math., 73 (2015), 391-399.  doi: 10.1090/qam/1383.

[13]

Y.-P. ChoiS.-Y. HaS. Jung and M. Slemrod, Kuramoto oscillators with inertia: A fast-slow dynamical systems approach, Quart. Appl. Math., 73 (2015), 467-482.  doi: 10.1090/qam/1380.

[14]

Y.-P. ChoiS.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44.  doi: 10.1016/j.physd.2010.08.004.

[15]

Y.-P. ChoiS.-Y. Ha and S.-B. Yun, Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto-Daido model with inertia, Netw. Heter. Media, 8 (2013), 943-968.  doi: 10.3934/nhm.2013.8.943.

[16]

Y.-P. ChoiS.-Y. HaZ. LiX. Xue and S.-B. Yun, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Differ. Equat., 257 (2014), 2591-2621.  doi: 10.1016/j.jde.2014.05.054.

[17]

Y.-P. Choi and Z. Li, On the region of attraction of phase-locked states for swing equations on connected graphs with inhomogeneous damping, submitted.

[18]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.

[19]

R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 48-58. 

[20]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.

[21]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.

[22]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.

[23]

G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585.  doi: 10.1007/BF00164052.

[24]

S.-Y. Ha and Z. Li, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Meth. Mod. Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.

[25]

S.-Y. Ha, Y.-H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, submitted.

[26]

S.-Y. HaD. KoJ. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267.  doi: 10.4171/EMSS/17.

[27]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Comm. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.

[28]

S.-Y. HaJ. Kim and X. Zhang, Uniform $\ell_p$-stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.

[29]

A. Haraux and M. A. Jendoubi, Convergence of solutions of second order gradient-like systems with analytic nonlinearities, J. Differ. Equat., 114 (1998), 313-320.  doi: 10.1006/jdeq.1997.3393.

[30]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420.

[31]

Z. LiX. Xue and D. Yu, Synchronization and transient stability in power grids based on Lojasiewicz inequalities, SIAM J. Control Optim., 52 (2014), 2482-2511.  doi: 10.1137/130950604.

[32]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347.  doi: 10.1007/s00332-006-0806-x.

[33]

R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266.  doi: 10.1016/j.physd.2005.01.017.

[34]

R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635.  doi: 10.1007/BF01029202.

[35]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Mathematics, 1048, Springer, Berlin, Heidelberg, 1984, 60-110. doi: 10.1007/BFb0071878.

[36]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.

[37]

H. Spohn, On the Vlasov hierarchy, Math. Methods Appl. Sci., 3 (1981), 445-455.  doi: 10.1002/mma.1670030131.

[38]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.

[39]

H. A. Tanaka, A. J. Lichtenberg and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems Phys. Rev. Lett. 78 (1997), 2104. doi: 10.1103/PhysRevLett.78.2104.

[40]

H. A. TanakaA. J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses, Physica D, 100 (1997), 279-300.  doi: 10.1016/S0167-2789(96)00193-5.

[41]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. 

[42]

M. Verwoerd and O. Mason, Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst., 7 (2008), 134-160.  doi: 10.1137/070686858.

[43]

M. Verwoerd and O. Mason, On computing the critical coupling coefficient for the Kuramoto Model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst., 8 (2009), 417-453.  doi: 10.1137/080725726.

[44]

C. Villani, Optimal Transport, Old and New, Springer 2008. doi: 10.1007/978-3-540-71050-9.

[45]

A. T. Winfree, The Geometry of Biological Time, Springer New York, 1980.

[46]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.  doi: 10.1016/0022-5193(67)90051-3.

[1]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[2]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[3]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[4]

Jeremias Epperlein, Stefan Siegmund. Phase-locked trajectories for dynamical systems on graphs. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1827-1844. doi: 10.3934/dcdsb.2013.18.1827

[5]

Matthew Rosenzweig. The mean-field limit of the Lieb-Liniger model. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3005-3037. doi: 10.3934/dcds.2022006

[6]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[7]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[8]

Hélène Hibon, Ying Hu, Shanjian Tang. Mean-field type quadratic BSDEs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022009

[9]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[10]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic and Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[11]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic and Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[12]

Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim. Uniform stability of the relativistic Cucker-Smale model and its application to a mean-field limit. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4209-4237. doi: 10.3934/cpaa.2021156

[13]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[14]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic and Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[15]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[16]

Nastassia Pouradier Duteil. Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17 (2) : 129-161. doi: 10.3934/nhm.2022001

[17]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[18]

Yuming Chen. Synchronized and nonsymmetric phase-locked periodic solutions in a neteork of neurons with McCulloch-Pitts nonlinearity. Conference Publications, 2001, 2001 (Special) : 102-108. doi: 10.3934/proc.2001.2001.102

[19]

Ryotaro Tsuneki, Shinji Doi, Junko Inoue. Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences & Engineering, 2014, 11 (1) : 125-138. doi: 10.3934/mbe.2014.11.125

[20]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (257)
  • HTML views (214)
  • Cited by (8)

Other articles
by authors

[Back to Top]