-
Previous Article
Selection of calibrated subaction when temperature goes to zero in the discounted problem
- DCDS Home
- This Issue
-
Next Article
A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations
Existence of weak solutions for particle-laden flow with surface tension
1. | Institute of Applied Mathematics and Mechanics of the NASU, 1, Dobrovol'skogo Str., 84100, Sloviansk, Ukraine |
2. | Department of Mathematics, University of California, Los Angeles, California 90095-1555, USA |
3. | Vasyl' Stus Donetsk National University, 21, 600-richya Str., 21021, Vinnytsia, Ukraine |
4. | Department of Mathematics, Duke University, Durham, North Carolina, 27708-0320, USA |
We prove the existence of solutions for a coupled system modeling the flow of a suspension of fluid and negatively buoyant non-colloidal particles in the thin film limit. The equations take the form of a fourth-order non-linear degenerate parabolic equation for the film height $h$ coupled to a second-order degenerate parabolic equation for the particle density $ψ$. We prove the existence of physically relevant solutions, which satisfy the uniform bounds $0 ≤ ψ/h ≤ 1$ and $h ≥ 0$.
References:
[1] |
J. W. Barrett, H. Garcke and R. Nürnberg,
Finite element approximation of surfactant spreading on a thin film, SIAM Journal on Numerical Analysis, 41 (2003), 1427-1464.
doi: 10.1137/S003614290139799X. |
[2] |
S. Berres, R. Bürger and E. Tory, Mixed-type systems of convection-diffusion equations modeling polydisperse sedimentation, in Analysis and Simulation of Multifield Problems (eds. W. Wendland and M. Efendiev), Springer Nature (2003), 257-262.
doi: 10.1007/978-3-540-36527-3_30. |
[3] |
A. L. Bertozzi and M. Pugh,
The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions, Communications on Pure and Applied Mathematics, 49 (1996), 85-123.
doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. |
[4] |
A. L. Bertozzi and M. Pugh,
Long-wave instabilities and saturation in thin film equations, Communications on Pure and Applied Mathematics, 51 (1998), 625-661.
doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9. |
[5] |
F. Bernis and A. Friedman,
Higher order nonlinear degenerate parabolic equations, Higher Order Nonlinear Degenerate Parabolic Equations, 83 (1990), 179-206.
doi: 10.1016/0022-0396(90)90074-Y. |
[6] |
F. Boyer, E. Guazelli and O. Pouliquen Unifying suspension and granular rheology Physical Review Letters, 107 (2011), 188301.
doi: 10.1103/PhysRevLett.107.188301. |
[7] |
M. Chugunova, M. C. Pugh and R. M. Taranets,
Nonnegative solutions for a long-wave unstable thin film equation with convection, SIAM Journal on Mathematical Analysis, 42 (2010), 1826-1853.
doi: 10.1137/090777062. |
[8] |
M. Chugunova and R. M. Taranets,
Nonnegative weak solutions for a degenerate system modeling the spreading of surfactant on thin films, Applied Mathematics Research eXpress, 2013 (2013), 102-126.
doi: 10.1093/amrx/abs014. |
[9] |
M. Chugunova and R. M. Taranets,
Blow-up with mass concentration for the long-wave unstable thin-film equation, Applicable Analysis, 95 (2016), 944-962.
doi: 10.1080/00036811.2015.1047829. |
[10] |
M. Chugunova, J. R. King and R. M. Taranets,
The interface dynamics of a surfactant drop on a thin viscous film, European Journal of Applied Mathematics, 28 (2017), 656-686.
doi: 10.1017/S0956792516000474. |
[11] |
R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films,
Reviews of Modern Physics, 81 (2009), 1131.
doi: 10.1103/RevModPhys.81.1131. |
[12] |
E. DiBenedetto,
Degenerate Parabolic Equations, Universitext. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[13] |
H. Garcke and S. Wieland,
Surfactant spreading on thin viscous films: Nonnegative solutions of a coupled degenerate system, SIAM Journal on Mathematical Analysis, 37 (2006), 2025-2048.
doi: 10.1137/040617017. |
[14] |
S. Jachalski, G. Kitavtsev and R. M. Taranets,
Weak solutions to lubrication systems describing the evolution of bilayer thin films, Communications in Mathematical Sciences, 12 (2014), 527-544.
doi: 10.4310/CMS.2014.v12.n3.a7. |
[15] |
A. Mavromoustaki, L. Wang, J. Wong and A. L. Bertozzi,
Surface tension effects for particle settling and resuspension in viscous thin films, Nonlinearity, 31 (2018), 3151-3171.
doi: 10.1088/1361-6544/aab91d. |
[16] |
N. Murisic, B. Pausader, D. Peschka and A. L. Bertozzi,
Dynamics of particle settling and resuspension in viscous liquid films, Journal of Fluid Mechanics, 717 (2013), 203-231.
doi: 10.1017/jfm.2012.567. |
[17] |
A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films,
Reviews of Modern Physics, 69 (1997), 931.
doi: 10.1103/RevModPhys.69.931. |
[18] |
A. E. Shishkov and R. M. Taranets, On the thin-film equation with nonlinear convection in multidimensional domains, Ukr. Math. Bull, 1 (2004), 407{450. (Russian: http://dspace.nbuv.gov.ua/handle/123456789/124625) |
[19] |
J. Wong,
Modeling and Analysis of Thin-Film Incline Flow: Bidensity Suspensions and Surface, Tension Effects, Ph. D thesis, University of California, Los Angeles, 2017. |
[20] |
L. Zhornitskaya and A. L. Bertozzi,
Positivity-preserving numerical schemes for lubrication-type equations, SIAM Journal on Numerical Analysis, 37 (1999), 523-555.
doi: 10.1137/S0036142998335698. |
[21] |
J. Zhou, B. Dupuy, A. L. Bertozzi and A. E. Hosoi, Theory for shock dynamics in particle-laden thin films,
Physical Review Letters, 94 (2005), 117803.
doi: 10.1103/PhysRevLett.94.117803. |
show all references
References:
[1] |
J. W. Barrett, H. Garcke and R. Nürnberg,
Finite element approximation of surfactant spreading on a thin film, SIAM Journal on Numerical Analysis, 41 (2003), 1427-1464.
doi: 10.1137/S003614290139799X. |
[2] |
S. Berres, R. Bürger and E. Tory, Mixed-type systems of convection-diffusion equations modeling polydisperse sedimentation, in Analysis and Simulation of Multifield Problems (eds. W. Wendland and M. Efendiev), Springer Nature (2003), 257-262.
doi: 10.1007/978-3-540-36527-3_30. |
[3] |
A. L. Bertozzi and M. Pugh,
The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions, Communications on Pure and Applied Mathematics, 49 (1996), 85-123.
doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. |
[4] |
A. L. Bertozzi and M. Pugh,
Long-wave instabilities and saturation in thin film equations, Communications on Pure and Applied Mathematics, 51 (1998), 625-661.
doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9. |
[5] |
F. Bernis and A. Friedman,
Higher order nonlinear degenerate parabolic equations, Higher Order Nonlinear Degenerate Parabolic Equations, 83 (1990), 179-206.
doi: 10.1016/0022-0396(90)90074-Y. |
[6] |
F. Boyer, E. Guazelli and O. Pouliquen Unifying suspension and granular rheology Physical Review Letters, 107 (2011), 188301.
doi: 10.1103/PhysRevLett.107.188301. |
[7] |
M. Chugunova, M. C. Pugh and R. M. Taranets,
Nonnegative solutions for a long-wave unstable thin film equation with convection, SIAM Journal on Mathematical Analysis, 42 (2010), 1826-1853.
doi: 10.1137/090777062. |
[8] |
M. Chugunova and R. M. Taranets,
Nonnegative weak solutions for a degenerate system modeling the spreading of surfactant on thin films, Applied Mathematics Research eXpress, 2013 (2013), 102-126.
doi: 10.1093/amrx/abs014. |
[9] |
M. Chugunova and R. M. Taranets,
Blow-up with mass concentration for the long-wave unstable thin-film equation, Applicable Analysis, 95 (2016), 944-962.
doi: 10.1080/00036811.2015.1047829. |
[10] |
M. Chugunova, J. R. King and R. M. Taranets,
The interface dynamics of a surfactant drop on a thin viscous film, European Journal of Applied Mathematics, 28 (2017), 656-686.
doi: 10.1017/S0956792516000474. |
[11] |
R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films,
Reviews of Modern Physics, 81 (2009), 1131.
doi: 10.1103/RevModPhys.81.1131. |
[12] |
E. DiBenedetto,
Degenerate Parabolic Equations, Universitext. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[13] |
H. Garcke and S. Wieland,
Surfactant spreading on thin viscous films: Nonnegative solutions of a coupled degenerate system, SIAM Journal on Mathematical Analysis, 37 (2006), 2025-2048.
doi: 10.1137/040617017. |
[14] |
S. Jachalski, G. Kitavtsev and R. M. Taranets,
Weak solutions to lubrication systems describing the evolution of bilayer thin films, Communications in Mathematical Sciences, 12 (2014), 527-544.
doi: 10.4310/CMS.2014.v12.n3.a7. |
[15] |
A. Mavromoustaki, L. Wang, J. Wong and A. L. Bertozzi,
Surface tension effects for particle settling and resuspension in viscous thin films, Nonlinearity, 31 (2018), 3151-3171.
doi: 10.1088/1361-6544/aab91d. |
[16] |
N. Murisic, B. Pausader, D. Peschka and A. L. Bertozzi,
Dynamics of particle settling and resuspension in viscous liquid films, Journal of Fluid Mechanics, 717 (2013), 203-231.
doi: 10.1017/jfm.2012.567. |
[17] |
A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films,
Reviews of Modern Physics, 69 (1997), 931.
doi: 10.1103/RevModPhys.69.931. |
[18] |
A. E. Shishkov and R. M. Taranets, On the thin-film equation with nonlinear convection in multidimensional domains, Ukr. Math. Bull, 1 (2004), 407{450. (Russian: http://dspace.nbuv.gov.ua/handle/123456789/124625) |
[19] |
J. Wong,
Modeling and Analysis of Thin-Film Incline Flow: Bidensity Suspensions and Surface, Tension Effects, Ph. D thesis, University of California, Los Angeles, 2017. |
[20] |
L. Zhornitskaya and A. L. Bertozzi,
Positivity-preserving numerical schemes for lubrication-type equations, SIAM Journal on Numerical Analysis, 37 (1999), 523-555.
doi: 10.1137/S0036142998335698. |
[21] |
J. Zhou, B. Dupuy, A. L. Bertozzi and A. E. Hosoi, Theory for shock dynamics in particle-laden thin films,
Physical Review Letters, 94 (2005), 117803.
doi: 10.1103/PhysRevLett.94.117803. |
[1] |
Yang Liu, Wenke Li. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4367-4381. doi: 10.3934/dcdss.2021112 |
[2] |
Marco Donatelli, Luca Vilasi. Existence of multiple solutions for a fourth-order problem with variable exponent. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2471-2481. doi: 10.3934/dcdsb.2021141 |
[3] |
Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110 |
[4] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[5] |
Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667 |
[6] |
Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617 |
[7] |
José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1 |
[8] |
Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465 |
[9] |
Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203 |
[10] |
Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225 |
[11] |
Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393 |
[12] |
Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851 |
[13] |
Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564 |
[14] |
M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure and Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557 |
[15] |
Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729 |
[16] |
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781 |
[17] |
Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005 |
[18] |
Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691 |
[19] |
Zhen-Zhen Tao, Bing Sun. Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022080 |
[20] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]