• Previous Article
    Selection of calibrated subaction when temperature goes to zero in the discounted problem
  • DCDS Home
  • This Issue
  • Next Article
    A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations
October  2018, 38(10): 4979-4996. doi: 10.3934/dcds.2018217

Existence of weak solutions for particle-laden flow with surface tension

1. 

Institute of Applied Mathematics and Mechanics of the NASU, 1, Dobrovol'skogo Str., 84100, Sloviansk, Ukraine

2. 

Department of Mathematics, University of California, Los Angeles, California 90095-1555, USA

3. 

Vasyl' Stus Donetsk National University, 21, 600-richya Str., 21021, Vinnytsia, Ukraine

4. 

Department of Mathematics, Duke University, Durham, North Carolina, 27708-0320, USA

* Corresponding author: Roman M. Taranets

Received  October 2017 Revised  May 2018 Published  July 2018

Fund Project: This work was supported in part by NSF grant DMS-1312543, and by a grant from Ministry of Education and Science of Ukraine (0118U003138 to Roman Taranets).

We prove the existence of solutions for a coupled system modeling the flow of a suspension of fluid and negatively buoyant non-colloidal particles in the thin film limit. The equations take the form of a fourth-order non-linear degenerate parabolic equation for the film height $h$ coupled to a second-order degenerate parabolic equation for the particle density $ψ$. We prove the existence of physically relevant solutions, which satisfy the uniform bounds $0 ≤ ψ/h ≤ 1$ and $h ≥ 0$.

Citation: Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217
References:
[1]

J. W. BarrettH. Garcke and R. Nürnberg, Finite element approximation of surfactant spreading on a thin film, SIAM Journal on Numerical Analysis, 41 (2003), 1427-1464.  doi: 10.1137/S003614290139799X.  Google Scholar

[2]

S. Berres, R. Bürger and E. Tory, Mixed-type systems of convection-diffusion equations modeling polydisperse sedimentation, in Analysis and Simulation of Multifield Problems (eds. W. Wendland and M. Efendiev), Springer Nature (2003), 257-262. doi: 10.1007/978-3-540-36527-3_30.  Google Scholar

[3]

A. L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions, Communications on Pure and Applied Mathematics, 49 (1996), 85-123.  doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2.  Google Scholar

[4]

A. L. Bertozzi and M. Pugh, Long-wave instabilities and saturation in thin film equations, Communications on Pure and Applied Mathematics, 51 (1998), 625-661.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9.  Google Scholar

[5]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, Higher Order Nonlinear Degenerate Parabolic Equations, 83 (1990), 179-206.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[6]

F. Boyer, E. Guazelli and O. Pouliquen Unifying suspension and granular rheology Physical Review Letters, 107 (2011), 188301. doi: 10.1103/PhysRevLett.107.188301.  Google Scholar

[7]

M. ChugunovaM. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection, SIAM Journal on Mathematical Analysis, 42 (2010), 1826-1853.  doi: 10.1137/090777062.  Google Scholar

[8]

M. Chugunova and R. M. Taranets, Nonnegative weak solutions for a degenerate system modeling the spreading of surfactant on thin films, Applied Mathematics Research eXpress, 2013 (2013), 102-126.  doi: 10.1093/amrx/abs014.  Google Scholar

[9]

M. Chugunova and R. M. Taranets, Blow-up with mass concentration for the long-wave unstable thin-film equation, Applicable Analysis, 95 (2016), 944-962.  doi: 10.1080/00036811.2015.1047829.  Google Scholar

[10]

M. ChugunovaJ. R. King and R. M. Taranets, The interface dynamics of a surfactant drop on a thin viscous film, European Journal of Applied Mathematics, 28 (2017), 656-686.  doi: 10.1017/S0956792516000474.  Google Scholar

[11]

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Reviews of Modern Physics, 81 (2009), 1131. doi: 10.1103/RevModPhys.81.1131.  Google Scholar

[12]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[13]

H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: Nonnegative solutions of a coupled degenerate system, SIAM Journal on Mathematical Analysis, 37 (2006), 2025-2048.  doi: 10.1137/040617017.  Google Scholar

[14]

S. JachalskiG. Kitavtsev and R. M. Taranets, Weak solutions to lubrication systems describing the evolution of bilayer thin films, Communications in Mathematical Sciences, 12 (2014), 527-544.  doi: 10.4310/CMS.2014.v12.n3.a7.  Google Scholar

[15]

A. MavromoustakiL. WangJ. Wong and A. L. Bertozzi, Surface tension effects for particle settling and resuspension in viscous thin films, Nonlinearity, 31 (2018), 3151-3171.  doi: 10.1088/1361-6544/aab91d.  Google Scholar

[16]

N. MurisicB. PausaderD. Peschka and A. L. Bertozzi, Dynamics of particle settling and resuspension in viscous liquid films, Journal of Fluid Mechanics, 717 (2013), 203-231.  doi: 10.1017/jfm.2012.567.  Google Scholar

[17]

A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Reviews of Modern Physics, 69 (1997), 931. doi: 10.1103/RevModPhys.69.931.  Google Scholar

[18]

A. E. Shishkov and R. M. Taranets, On the thin-film equation with nonlinear convection in multidimensional domains, Ukr. Math. Bull, 1 (2004), 407{450. (Russian: http://dspace.nbuv.gov.ua/handle/123456789/124625)  Google Scholar

[19]

J. Wong, Modeling and Analysis of Thin-Film Incline Flow: Bidensity Suspensions and Surface, Tension Effects, Ph. D thesis, University of California, Los Angeles, 2017.  Google Scholar

[20]

L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM Journal on Numerical Analysis, 37 (1999), 523-555.  doi: 10.1137/S0036142998335698.  Google Scholar

[21]

J. Zhou, B. Dupuy, A. L. Bertozzi and A. E. Hosoi, Theory for shock dynamics in particle-laden thin films, Physical Review Letters, 94 (2005), 117803. doi: 10.1103/PhysRevLett.94.117803.  Google Scholar

show all references

References:
[1]

J. W. BarrettH. Garcke and R. Nürnberg, Finite element approximation of surfactant spreading on a thin film, SIAM Journal on Numerical Analysis, 41 (2003), 1427-1464.  doi: 10.1137/S003614290139799X.  Google Scholar

[2]

S. Berres, R. Bürger and E. Tory, Mixed-type systems of convection-diffusion equations modeling polydisperse sedimentation, in Analysis and Simulation of Multifield Problems (eds. W. Wendland and M. Efendiev), Springer Nature (2003), 257-262. doi: 10.1007/978-3-540-36527-3_30.  Google Scholar

[3]

A. L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions, Communications on Pure and Applied Mathematics, 49 (1996), 85-123.  doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2.  Google Scholar

[4]

A. L. Bertozzi and M. Pugh, Long-wave instabilities and saturation in thin film equations, Communications on Pure and Applied Mathematics, 51 (1998), 625-661.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9.  Google Scholar

[5]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, Higher Order Nonlinear Degenerate Parabolic Equations, 83 (1990), 179-206.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[6]

F. Boyer, E. Guazelli and O. Pouliquen Unifying suspension and granular rheology Physical Review Letters, 107 (2011), 188301. doi: 10.1103/PhysRevLett.107.188301.  Google Scholar

[7]

M. ChugunovaM. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection, SIAM Journal on Mathematical Analysis, 42 (2010), 1826-1853.  doi: 10.1137/090777062.  Google Scholar

[8]

M. Chugunova and R. M. Taranets, Nonnegative weak solutions for a degenerate system modeling the spreading of surfactant on thin films, Applied Mathematics Research eXpress, 2013 (2013), 102-126.  doi: 10.1093/amrx/abs014.  Google Scholar

[9]

M. Chugunova and R. M. Taranets, Blow-up with mass concentration for the long-wave unstable thin-film equation, Applicable Analysis, 95 (2016), 944-962.  doi: 10.1080/00036811.2015.1047829.  Google Scholar

[10]

M. ChugunovaJ. R. King and R. M. Taranets, The interface dynamics of a surfactant drop on a thin viscous film, European Journal of Applied Mathematics, 28 (2017), 656-686.  doi: 10.1017/S0956792516000474.  Google Scholar

[11]

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Reviews of Modern Physics, 81 (2009), 1131. doi: 10.1103/RevModPhys.81.1131.  Google Scholar

[12]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[13]

H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: Nonnegative solutions of a coupled degenerate system, SIAM Journal on Mathematical Analysis, 37 (2006), 2025-2048.  doi: 10.1137/040617017.  Google Scholar

[14]

S. JachalskiG. Kitavtsev and R. M. Taranets, Weak solutions to lubrication systems describing the evolution of bilayer thin films, Communications in Mathematical Sciences, 12 (2014), 527-544.  doi: 10.4310/CMS.2014.v12.n3.a7.  Google Scholar

[15]

A. MavromoustakiL. WangJ. Wong and A. L. Bertozzi, Surface tension effects for particle settling and resuspension in viscous thin films, Nonlinearity, 31 (2018), 3151-3171.  doi: 10.1088/1361-6544/aab91d.  Google Scholar

[16]

N. MurisicB. PausaderD. Peschka and A. L. Bertozzi, Dynamics of particle settling and resuspension in viscous liquid films, Journal of Fluid Mechanics, 717 (2013), 203-231.  doi: 10.1017/jfm.2012.567.  Google Scholar

[17]

A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Reviews of Modern Physics, 69 (1997), 931. doi: 10.1103/RevModPhys.69.931.  Google Scholar

[18]

A. E. Shishkov and R. M. Taranets, On the thin-film equation with nonlinear convection in multidimensional domains, Ukr. Math. Bull, 1 (2004), 407{450. (Russian: http://dspace.nbuv.gov.ua/handle/123456789/124625)  Google Scholar

[19]

J. Wong, Modeling and Analysis of Thin-Film Incline Flow: Bidensity Suspensions and Surface, Tension Effects, Ph. D thesis, University of California, Los Angeles, 2017.  Google Scholar

[20]

L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM Journal on Numerical Analysis, 37 (1999), 523-555.  doi: 10.1137/S0036142998335698.  Google Scholar

[21]

J. Zhou, B. Dupuy, A. L. Bertozzi and A. E. Hosoi, Theory for shock dynamics in particle-laden thin films, Physical Review Letters, 94 (2005), 117803. doi: 10.1103/PhysRevLett.94.117803.  Google Scholar

[1]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (84)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]