October  2018, 38(10): 5085-5103. doi: 10.3934/dcds.2018223

Characterization of noncorrelated pattern sequences and correlation dimensions

1. 

Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

3. 

Advanced Mathematical Institute, Osaka City University, Osaka, 558-8585, Japan

* Corresponding author: Li Peng

Received  December 2017 Revised  May 2018 Published  July 2018

Fund Project: This work was supported by the NSFC [11571127, 11431007]

We consider the correlation functions of binary pattern sequences of degree 3 as well as those with general degrees and special patterns and obtain necessary and sufficient conditions to be noncorrelated. We also obtain the correlation dimensions for those with degree 2.

Citation: Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5085-5103. doi: 10.3934/dcds.2018223
References:
[1]

J.-P. Allouche and P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith., 60 (1991), 1-27. doi: 10.4064/aa-60-1-1-27. Google Scholar

[2]

D. W. Boyd, J. H. Cook and P. Morton, On sequences of $±$1's defined by binary patterns, Dissertationes Math., 283 (1989), 64pp. Google Scholar

[3]

J. CoquetT. Kamae and M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France, 105 (1977), 369-384. Google Scholar

[4]

N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Berlin, 2002.Google Scholar

[5]

C. Godrèche and J. M. Luck, Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures, J. Phys. A, 23 (1990), 3769-3797. doi: 10.1088/0305-4470/23/16/024. Google Scholar

[6]

P. Morton, Connections between binary patterns and paperfolding, Sém. Théor. Nombres Bordeaux(2), 2 (1990), 1-12. doi: 10.5802/jtnb.16. Google Scholar

[7]

P. Morton and W. J. Mourant, Paper folding, digit patterns and groups of arithmetic fractals, Proc. London Math. Soc.(3), 59 (1989), 253-293. doi: 10.1112/plms/s3-59.2.253. Google Scholar

[8]

M. Niu and Z. X. Wen, Correlation dimension of the spectral measure for m-multiplicative sequences, (Chinese), Acta Math. Sci. Ser. A (Chin. Ed.), 27 (2007), 862-870. Google Scholar

[9]

L. Peng and T. Kamae, Spectral measure of the Thue-Morse sequence and the dynamical system and random walk related to it, Ergodic Theory Dynam. Systems, 36 (2016), 1247-1259. doi: 10.1017/etds.2014.121. Google Scholar

[10]

K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.Google Scholar

[11]

M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Springer-Verlag, Berlin, 1987.Google Scholar

[12]

M. A. ZaksA. S. Pikovsky and J. Kurths, On the correlation dimension of the spectral measure for the Thue-Morse sequence, J. Statist. Phys., 88 (1997), 1387-1392. doi: 10.1007/BF02732440. Google Scholar

show all references

References:
[1]

J.-P. Allouche and P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith., 60 (1991), 1-27. doi: 10.4064/aa-60-1-1-27. Google Scholar

[2]

D. W. Boyd, J. H. Cook and P. Morton, On sequences of $±$1's defined by binary patterns, Dissertationes Math., 283 (1989), 64pp. Google Scholar

[3]

J. CoquetT. Kamae and M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France, 105 (1977), 369-384. Google Scholar

[4]

N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Berlin, 2002.Google Scholar

[5]

C. Godrèche and J. M. Luck, Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures, J. Phys. A, 23 (1990), 3769-3797. doi: 10.1088/0305-4470/23/16/024. Google Scholar

[6]

P. Morton, Connections between binary patterns and paperfolding, Sém. Théor. Nombres Bordeaux(2), 2 (1990), 1-12. doi: 10.5802/jtnb.16. Google Scholar

[7]

P. Morton and W. J. Mourant, Paper folding, digit patterns and groups of arithmetic fractals, Proc. London Math. Soc.(3), 59 (1989), 253-293. doi: 10.1112/plms/s3-59.2.253. Google Scholar

[8]

M. Niu and Z. X. Wen, Correlation dimension of the spectral measure for m-multiplicative sequences, (Chinese), Acta Math. Sci. Ser. A (Chin. Ed.), 27 (2007), 862-870. Google Scholar

[9]

L. Peng and T. Kamae, Spectral measure of the Thue-Morse sequence and the dynamical system and random walk related to it, Ergodic Theory Dynam. Systems, 36 (2016), 1247-1259. doi: 10.1017/etds.2014.121. Google Scholar

[10]

K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.Google Scholar

[11]

M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Springer-Verlag, Berlin, 1987.Google Scholar

[12]

M. A. ZaksA. S. Pikovsky and J. Kurths, On the correlation dimension of the spectral measure for the Thue-Morse sequence, J. Statist. Phys., 88 (1997), 1387-1392. doi: 10.1007/BF02732440. Google Scholar

Table 1.   
$(a_1, a_2, a_3)$pattern setspectrum
$(-1, 1, 1)$ $\{01, 10, 11\}$
$a_1a_2a_3=-1$ $(1, -1, 1)$ $\{01\}$noncorrelated sequence
$(1, 1, -1)$ $\{11\}$ $D_2=1$
$(-1, -1, -1)$ $\{10\}$
$a_1a_2a_3=1$ $(1, -1, -1)$ $\{01, 11\}$singular spectrum
$a_2=-1$ $(-1, -1, 1)$ $\{10, 11\}$ $D_2=3-\log_2(1+\sqrt{17})$
$a_1a_2a_3=1$ $(-1, 1, -1)$ $\{01, 10\}$periodic sequence
$a_2=1$ $D_2=0$
$(a_1, a_2, a_3)$pattern setspectrum
$(-1, 1, 1)$ $\{01, 10, 11\}$
$a_1a_2a_3=-1$ $(1, -1, 1)$ $\{01\}$noncorrelated sequence
$(1, 1, -1)$ $\{11\}$ $D_2=1$
$(-1, -1, -1)$ $\{10\}$
$a_1a_2a_3=1$ $(1, -1, -1)$ $\{01, 11\}$singular spectrum
$a_2=-1$ $(-1, -1, 1)$ $\{10, 11\}$ $D_2=3-\log_2(1+\sqrt{17})$
$a_1a_2a_3=1$ $(-1, 1, -1)$ $\{01, 10\}$periodic sequence
$a_2=1$ $D_2=0$
[1]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[2]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[3]

Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049

[4]

Michael Barnsley, James Keesling, Mrinal Kanti Roychowdhury. Special issue on fractal geometry, dynamical systems, and their applications. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : ⅰ-ⅰ. doi: 10.3934/dcdss.201908i

[5]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[6]

Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167

[7]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[8]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[9]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[10]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[11]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[12]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[13]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[14]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[15]

Xin-Guo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785-796. doi: 10.3934/naco.2012.2.785

[16]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[17]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[18]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[19]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

[20]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (53)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]