| pattern set | spectrum | |
| | ||
| | | noncorrelated sequence |
| | | |
| | ||
| | singular spectrum | |
| | | |
| | periodic sequence | |
|
We consider the correlation functions of binary pattern sequences of degree 3 as well as those with general degrees and special patterns and obtain necessary and sufficient conditions to be noncorrelated. We also obtain the correlation dimensions for those with degree 2.
Citation: |
Table 1.
| pattern set | spectrum | |
| | ||
| | | noncorrelated sequence |
| | | |
| | ||
| | singular spectrum | |
| | | |
| | periodic sequence | |
|
[1] |
J.-P. Allouche and P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith., 60 (1991), 1-27.
doi: 10.4064/aa-60-1-1-27.![]() ![]() ![]() |
[2] |
D. W. Boyd, J. H. Cook and P. Morton, On sequences of $±$1's defined by binary patterns,
Dissertationes Math., 283 (1989), 64pp.
![]() ![]() |
[3] |
J. Coquet, T. Kamae and M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France, 105 (1977), 369-384.
![]() ![]() |
[4] |
N. P. Fogg,
Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Berlin, 2002.
![]() |
[5] |
C. Godrèche and J. M. Luck, Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures, J. Phys. A, 23 (1990), 3769-3797.
doi: 10.1088/0305-4470/23/16/024.![]() ![]() ![]() |
[6] |
P. Morton, Connections between binary patterns and paperfolding, Sém. Théor. Nombres Bordeaux, 2 (1990), 1-12.
doi: 10.5802/jtnb.16.![]() ![]() ![]() |
[7] |
P. Morton and W. J. Mourant, Paper folding, digit patterns and groups of arithmetic fractals, Proc. London Math. Soc., 59 (1989), 253-293.
doi: 10.1112/plms/s3-59.2.253.![]() ![]() ![]() |
[8] |
M. Niu and Z. X. Wen, Correlation dimension of the spectral measure for m-multiplicative sequences, (Chinese), Acta Math. Sci. Ser. A (Chin. Ed.), 27 (2007), 862-870.
![]() ![]() |
[9] |
L. Peng and T. Kamae, Spectral measure of the Thue-Morse sequence and the dynamical system and random walk related to it, Ergodic Theory Dynam. Systems, 36 (2016), 1247-1259.
doi: 10.1017/etds.2014.121.![]() ![]() ![]() |
[10] |
K. Petersen,
Ergodic Theory, Cambridge University Press, Cambridge, 1983.
![]() |
[11] |
M. Queffélec,
Substitution Dynamical Systems-Spectral Analysis, Springer-Verlag, Berlin, 1987.
![]() |
[12] |
M. A. Zaks, A. S. Pikovsky and J. Kurths, On the correlation dimension of the spectral measure for the Thue-Morse sequence, J. Statist. Phys., 88 (1997), 1387-1392.
doi: 10.1007/BF02732440.![]() ![]() ![]() |